import traceback from pprint import pformat from typing import * from scripts.faceswaplab_swapping import face_checkpoints from scripts.faceswaplab_utils.sd_utils import get_sd_option from scripts.faceswaplab_utils.typing import * import gradio as gr import onnx import pandas as pd from PIL import Image import scripts.faceswaplab_swapping.swapper as swapper from scripts.faceswaplab_postprocessing.postprocessing_options import ( PostProcessingOptions, ) from scripts.faceswaplab_ui.faceswaplab_postprocessing_ui import postprocessing_ui from scripts.faceswaplab_ui.faceswaplab_unit_settings import FaceSwapUnitSettings from scripts.faceswaplab_ui.faceswaplab_unit_ui import faceswap_unit_ui from scripts.faceswaplab_utils import imgutils from scripts.faceswaplab_utils.faceswaplab_logging import logger from scripts.faceswaplab_utils.models_utils import get_swap_models from scripts.faceswaplab_utils.ui_utils import dataclasses_from_flat_list def compare(img1: PILImage, img2: PILImage) -> str: """ Compares the similarity between two faces extracted from images using cosine similarity. Args: img1: The first image containing a face. img2: The second image containing a face. Returns: A str of a float value representing the similarity between the two faces (0 to 1). Returns"You need 2 images to compare" if one or both of the images do not contain any faces. """ try: if img1 is not None and img2 is not None: return str(swapper.compare_faces(img1, img2)) except Exception as e: logger.error("Fail to compare", e) traceback.print_exc() return "You need 2 images to compare" def extract_faces( files: List[gr.File], extract_path: Optional[str], *components: Tuple[gr.components.Component, ...], ) -> Optional[List[PILImage]]: """ Extracts faces from a list of image files. Given a list of image file paths, this function opens each image, extracts the faces, and saves them in a specified directory. Post-processing is applied to each extracted face, and the processed faces are saved as separate PNG files. Parameters: files (Optional[List[str]]): List of file paths to the images to extract faces from. extract_path (Optional[str]): Path where the extracted faces will be saved. If no path is provided, a temporary directory will be created. components (List[gr.components.Component]): List of components for post-processing. Returns: Optional[List[str]]: List of file paths to the saved images of the extracted faces. If no faces are found, None is returned. """ if files and len(files) == 0: logger.error("You need at least one image file to extract") return [] try: postprocess_options = dataclasses_from_flat_list( [PostProcessingOptions], components ).pop() images = [ Image.open(file.name) for file in files # type: ignore ] # potentially greedy but Image.open is supposed to be lazy result_images = swapper.extract_faces( images, extract_path=extract_path, postprocess_options=postprocess_options ) return result_images except Exception as e: logger.error("Failed to extract : %s", e) traceback.print_exc() return None def analyse_faces(image: PILImage, det_threshold: float = 0.5) -> Optional[str]: """ Function to analyze the faces in an image and provide a detailed report. Parameters ---------- image : PIL.PILImage The input image where faces will be detected. The image must be a PIL Image object. det_threshold : float, optional The detection threshold for the face detection process, by default 0.5. It determines the confidence level at which the function will consider a detected object as a face. Value should be in the range [0, 1], with higher values indicating greater certainty. Returns ------- str or None Returns a formatted string providing details about each face detected in the image. For each face, the string will include an index and a set of facial details. In the event of an exception (e.g., analysis failure), the function will log the error and return None. Raises ------ This function handles exceptions internally and does not raise. Examples -------- >>> image = Image.open("test.jpg") >>> print(analyse_faces(image, 0.7)) """ try: faces = swapper.get_faces(imgutils.pil_to_cv2(image), det_thresh=det_threshold) result = "" for i, face in enumerate(faces): result += f"\nFace {i} \n" + "=" * 40 + "\n" result += pformat(face) + "\n" result += "=" * 40 return result if result else None except Exception as e: logger.error("Analysis Failed : %s", e) traceback.print_exc() return None def build_face_checkpoint_and_save( batch_files: List[gr.File], name: str, str_gender: str, overwrite: bool ) -> PILImage: """ Builds a face checkpoint using the provided image files, performs face swapping, and saves the result to a file. If a blended face is successfully obtained and the face swapping process succeeds, the resulting image is returned. Otherwise, None is returned. Args: batch_files (list): List of image file paths used to create the face checkpoint. name (str): The name assigned to the face checkpoint. Returns: PIL.PILImage or None: The resulting swapped face image if the process is successful; None otherwise. """ try: if not batch_files: logger.error("No face found") return None # type: ignore (Optional not really supported by old gradio) gender = getattr(Gender, str_gender) logger.info("Choosen gender : %s", gender) images: list[PILImage] = [Image.open(file.name) for file in batch_files] # type: ignore preview_image: PILImage | None = ( face_checkpoints.build_face_checkpoint_and_save( images=images, name=name, overwrite=overwrite, gender=gender ) ) except Exception as e: logger.error("Failed to build checkpoint %s", e) traceback.print_exc() return None # type: ignore return preview_image # type: ignore def explore_onnx_faceswap_model(model_path: str) -> pd.DataFrame: try: data: Dict[str, Any] = { "Node Name": [], "Op Type": [], "Inputs": [], "Outputs": [], "Attributes": [], } if model_path: model = onnx.load(model_path) for node in model.graph.node: data["Node Name"].append(pformat(node.name)) data["Op Type"].append(pformat(node.op_type)) data["Inputs"].append(pformat(node.input)) data["Outputs"].append(pformat(node.output)) attributes = [] for attr in node.attribute: attr_name = attr.name attr_value = attr.t attributes.append( "{} = {}".format(pformat(attr_name), pformat(attr_value)) ) data["Attributes"].append(attributes) df = pd.DataFrame(data) except Exception as e: logger.error("Failed to explore model %s", e) traceback.print_exc() return None # type: ignore return df def batch_process( files: List[gr.File], save_path: str, *components: Tuple[Any, ...] ) -> List[PILImage]: try: units_count = get_sd_option("faceswaplab_units_count", 3) classes: List[Any] = dataclasses_from_flat_list( [FaceSwapUnitSettings] * units_count + [PostProcessingOptions], components, ) units: List[FaceSwapUnitSettings] = [ u for u in classes if isinstance(u, FaceSwapUnitSettings) ] postprocess_options = classes[-1] images_paths = [file.name for file in files] # type: ignore return ( swapper.batch_process( images_paths, save_path=save_path, units=units, postprocess_options=postprocess_options, ) or [] ) except Exception as e: logger.error("Batch Process error : %s", e) traceback.print_exc() return [] def tools_ui() -> None: models = get_swap_models() with gr.Tab("Tools"): with gr.Tab("Build"): gr.Markdown( """Build a face based on a batch list of images. Will blend the resulting face and store the checkpoint in the faceswaplab/faces directory.""" ) with gr.Row(): build_batch_files = gr.components.File( type="file", file_count="multiple", label="Batch Sources Images", optional=True, elem_id="faceswaplab_build_batch_files", ) preview = gr.components.Image( type="pil", label="Preview", width=512, height=512, interactive=False, elem_id="faceswaplab_build_preview_face", ) build_name = gr.Textbox( value="Face", placeholder="Name of the character", label="Name of the character", elem_id="faceswaplab_build_character_name", ) build_gender = gr.Dropdown( value=Gender.AUTO.name, choices=[e.name for e in Gender], placeholder="Gender of the character", label="Gender of the character", elem_id="faceswaplab_build_character_gender", ) build_overwrite = gr.Checkbox( False, placeholder="overwrite", label="Overwrite Checkpoint if exist (else will add number)", elem_id="faceswaplab_build_overwrite", ) generate_checkpoint_btn = gr.Button( "Save", elem_id="faceswaplab_build_save_btn" ) with gr.Tab("Compare"): gr.Markdown( """Give a similarity score between two images (only first face is compared).""" ) with gr.Row(): img1 = gr.components.Image( type="pil", label="Face 1", elem_id="faceswaplab_compare_face1" ) img2 = gr.components.Image( type="pil", label="Face 2", elem_id="faceswaplab_compare_face2" ) compare_btn = gr.Button("Compare", elem_id="faceswaplab_compare_btn") compare_result_text = gr.Textbox( interactive=False, label="Similarity", value="0", elem_id="faceswaplab_compare_result", ) with gr.Tab("Extract"): gr.Markdown( """Extract all faces from a batch of images. Will apply enhancement in the tools enhancement tab.""" ) with gr.Row(): extracted_source_files = gr.components.File( type="file", file_count="multiple", label="Batch Sources Images", optional=True, elem_id="faceswaplab_extract_batch_images", ) extracted_faces = gr.Gallery( label="Extracted faces", show_label=False, elem_id="faceswaplab_extract_results", ) extract_save_path = gr.Textbox( label="Destination Directory", value="", elem_id="faceswaplab_extract_destination", ) extract_btn = gr.Button("Extract", elem_id="faceswaplab_extract_btn") with gr.Tab("Explore Model"): model = gr.Dropdown( choices=models, label="Model not found, please download one and reload automatic 1111", elem_id="faceswaplab_explore_model", ) explore_btn = gr.Button("Explore", elem_id="faceswaplab_explore_btn") explore_result_text = gr.Dataframe( interactive=False, label="Explored", elem_id="faceswaplab_explore_result", ) with gr.Tab("Analyse Face"): img_to_analyse = gr.components.Image( type="pil", label="Face", elem_id="faceswaplab_analyse_face" ) analyse_det_threshold = gr.Slider( 0.1, 1, 0.5, step=0.01, label="Detection threshold", elem_id="faceswaplab_analyse_det_threshold", ) analyse_btn = gr.Button("Analyse", elem_id="faceswaplab_analyse_btn") analyse_results = gr.Textbox( label="Results", interactive=False, value="", elem_id="faceswaplab_analyse_results", ) with gr.Tab("Batch Process"): with gr.Tab("Source Images"): gr.Markdown( """Batch process images. Will apply enhancement in the tools enhancement tab.""" ) with gr.Row(): batch_source_files = gr.components.File( type="file", file_count="multiple", label="Batch Sources Images", optional=True, elem_id="faceswaplab_batch_images", ) batch_results = gr.Gallery( label="Batch result", show_label=False, elem_id="faceswaplab_batch_results", ) batch_save_path = gr.Textbox( label="Destination Directory", value="outputs/faceswap/", elem_id="faceswaplab_batch_destination", ) batch_save_btn = gr.Button( "Process & Save", elem_id="faceswaplab_extract_btn" ) unit_components = [] for i in range(1, get_sd_option("faceswaplab_units_count", 3) + 1): unit_components += faceswap_unit_ui(False, i, id_prefix="faceswaplab_tab") upscale_options = postprocessing_ui() explore_btn.click( explore_onnx_faceswap_model, inputs=[model], outputs=[explore_result_text] ) compare_btn.click(compare, inputs=[img1, img2], outputs=[compare_result_text]) generate_checkpoint_btn.click( build_face_checkpoint_and_save, inputs=[build_batch_files, build_name, build_gender, build_overwrite], outputs=[preview], ) extract_btn.click( extract_faces, inputs=[extracted_source_files, extract_save_path] + upscale_options, outputs=[extracted_faces], ) analyse_btn.click( analyse_faces, inputs=[img_to_analyse, analyse_det_threshold], outputs=[analyse_results], ) batch_save_btn.click( batch_process, inputs=[batch_source_files, batch_save_path] + unit_components + upscale_options, outputs=[batch_results], ) def on_ui_tabs() -> List[Any]: with gr.Blocks(analytics_enabled=False) as ui_faceswap: tools_ui() return [(ui_faceswap, "FaceSwapLab", "faceswaplab_tab")]