import gradio as gr import modules from modules import shared, sd_models from modules.shared import cmd_opts, opts, state import scripts.faceswaplab_postprocessing.upscaling as upscaling from scripts.faceswaplab_utils.faceswaplab_logging import logger def upscaler_ui(): with gr.Tab(f"Post-Processing"): gr.Markdown( """Upscaling is performed on the whole image. Upscaling happens before face restoration.""") with gr.Row(): face_restorer_name = gr.Radio( label="Restore Face", choices=["None"] + [x.name() for x in shared.face_restorers], value=lambda : opts.data.get("faceswaplab_pp_default_face_restorer", shared.face_restorers[0].name()), type="value", elem_id="faceswaplab_pp_face_restorer" ) with gr.Column(): face_restorer_visibility = gr.Slider( 0, 1, value=lambda:opts.data.get("faceswaplab_pp_default_face_restorer_visibility", 1), step=0.001, label="Restore visibility", elem_id="faceswaplab_pp_face_restorer_visibility" ) codeformer_weight = gr.Slider( 0, 1, value=lambda:opts.data.get("faceswaplab_pp_default_face_restorer_weight", 1), step=0.001, label="codeformer weight", elem_id="faceswaplab_pp_face_restorer_weight" ) upscaler_name = gr.Dropdown( choices=[upscaler.name for upscaler in shared.sd_upscalers], value= lambda:opts.data.get("faceswaplab_pp_default_upscaler","None"), label="Upscaler", elem_id="faceswaplab_pp_upscaler" ) upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Upscaler scale", elem_id="faceswaplab_pp_upscaler_scale") upscaler_visibility = gr.Slider( 0, 1, value=lambda:opts.data.get("faceswaplab_pp_default_upscaler_visibility", 1), step=0.1, label="Upscaler visibility (if scale = 1)", elem_id="faceswaplab_pp_upscaler_visibility" ) with gr.Accordion(f"Post Inpainting", open=True): gr.Markdown( """Inpainting sends image to inpainting with a mask on face (once for each faces).""") inpainting_when = gr.Dropdown( elem_id="faceswaplab_pp_inpainting_when", choices = [e.value for e in upscaling.InpaintingWhen.__members__.values()],value=[upscaling.InpaintingWhen.BEFORE_RESTORE_FACE.value], label="Enable/When") inpainting_denoising_strength = gr.Slider( 0, 1, 0, step=0.01, elem_id="faceswaplab_pp_inpainting_denoising_strength", label="Denoising strenght (will send face to img2img after processing)" ) inpainting_denoising_prompt = gr.Textbox("Portrait of a [gender]",elem_id="faceswaplab_pp_inpainting_denoising_prompt", label="Inpainting prompt use [gender] instead of men or woman") inpainting_denoising_negative_prompt = gr.Textbox("", elem_id="faceswaplab_pp_inpainting_denoising_neg_prompt", label="Inpainting negative prompt use [gender] instead of men or woman") with gr.Row(): samplers_names = [s.name for s in modules.sd_samplers.all_samplers] inpainting_sampler = gr.Dropdown( choices=samplers_names, value=[samplers_names[0]], label="Inpainting Sampler", elem_id="faceswaplab_pp_inpainting_sampler" ) inpainting_denoising_steps = gr.Slider( 1, 150, 20, step=1, label="Inpainting steps", elem_id="faceswaplab_pp_inpainting_steps" ) inpaiting_model = gr.Dropdown(choices=["Current"]+sd_models.checkpoint_tiles(), default="Current", label="sd model (experimental)", elem_id="faceswaplab_pp_inpainting_sd_model") return [ face_restorer_name, face_restorer_visibility, codeformer_weight, upscaler_name, upscaler_scale, upscaler_visibility, inpainting_denoising_strength, inpainting_denoising_prompt, inpainting_denoising_negative_prompt, inpainting_denoising_steps, inpainting_sampler, inpainting_when, inpaiting_model ]