from typing import List, Tuple from PIL import Image from pydantic import BaseModel, Field from enum import Enum import base64, io from io import BytesIO from typing import List, Tuple, Optional import numpy as np class InpaintingWhen(Enum): NEVER = "Never" BEFORE_UPSCALING = "Before Upscaling/all" BEFORE_RESTORE_FACE = "After Upscaling/Before Restore Face" AFTER_ALL = "After All" class FaceSwapUnit(BaseModel): # The image given in reference source_img: str = Field( description="base64 reference image", examples=["...."], default=None, ) # The checkpoint file source_face: str = Field( description="face checkpoint (from models/faceswaplab/faces)", examples=["my_face.pkl"], default=None, ) # base64 batch source images batch_images: Tuple[str] = Field( description="list of base64 batch source images", examples=[ "....", "....", ], default=None, ) # Will blend faces if True blend_faces: bool = Field(description="Will blend faces if True", default=True) # Use same gender filtering same_gender: bool = Field(description="Use same gender filtering", default=False) # Use same gender filtering sort_by_size: bool = Field(description="Sort Faces by size", default=False) # If True, discard images with low similarity check_similarity: bool = Field( description="If True, discard images with low similarity", default=False ) # if True will compute similarity and add it to the image info compute_similarity: bool = Field( description="If True will compute similarity and add it to the image info", default=False, ) # Minimum similarity against the used face (reference, batch or checkpoint) min_sim: float = Field( description="Minimum similarity against the used face (reference, batch or checkpoint)", default=0.0, ) # Minimum similarity against the reference (reference or checkpoint if checkpoint is given) min_ref_sim: float = Field( description="Minimum similarity against the reference (reference or checkpoint if checkpoint is given)", default=0.0, ) # The face index to use for swapping faces_index: Tuple[int] = Field( description="The face index to use for swapping, list of face numbers starting from 0", default=(0,), ) reference_face_index: int = Field( description="The face index to use to extract face from reference", default=0, ) def get_batch_images(self) -> List[Image.Image]: images = [] if self.batch_images: for img in self.batch_images: images.append(base64_to_pil(img)) return images class PostProcessingOptions(BaseModel): face_restorer_name: str = Field(description="face restorer name", default=None) restorer_visibility: float = Field( description="face restorer visibility", default=1, le=1, ge=0 ) codeformer_weight: float = Field( description="face restorer codeformer weight", default=1, le=1, ge=0 ) upscaler_name: str = Field(description="upscaler name", default=None) scale: float = Field(description="upscaling scale", default=1, le=10, ge=0) upscaler_visibility: float = Field( description="upscaler visibility", default=1, le=1, ge=0 ) inpainting_denoising_strengh: float = Field( description="Inpainting denoising strenght", default=0, lt=1, ge=0 ) inpainting_prompt: str = Field( description="Inpainting denoising strenght", examples=["Portrait of a [gender]"], default="Portrait of a [gender]", ) inpainting_negative_prompt: str = Field( description="Inpainting denoising strenght", examples=[ "Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation" ], default="", ) inpainting_steps: int = Field( description="Inpainting steps", examples=["Portrait of a [gender]"], ge=1, le=150, default=20, ) inpainting_sampler: str = Field( description="Inpainting sampler", examples=["Euler"], default="Euler" ) inpainting_when: InpaintingWhen = Field( description="When inpainting happens", examples=[e.value for e in InpaintingWhen.__members__.values()], default=InpaintingWhen.NEVER, ) inpainting_model: str = Field( description="Inpainting model", examples=["Current"], default="Current" ) class FaceSwapRequest(BaseModel): image: str = Field( description="base64 reference image", examples=["...."], default=None, ) units: List[FaceSwapUnit] postprocessing: Optional[PostProcessingOptions] class FaceSwapResponse(BaseModel): images: List[str] = Field(description="base64 swapped image", default=None) infos: List[str] @property def pil_images(self) -> Image.Image: return [base64_to_pil(img) for img in self.images] def pil_to_base64(img: Image.Image) -> np.array: # type:ignore if isinstance(img, str): img = Image.open(img) buffer = BytesIO() img.save(buffer, format="PNG") img_data = buffer.getvalue() base64_data = base64.b64encode(img_data) return base64_data.decode("utf-8") def base64_to_pil(base64str: Optional[str]) -> Optional[Image.Image]: if base64str is None: return None if "base64," in base64str: # check if the base64 string has a data URL scheme base64_data = base64str.split("base64,")[-1] img_bytes = base64.b64decode(base64_data) else: # if no data URL scheme, just decode img_bytes = base64.b64decode(base64str) return Image.open(io.BytesIO(img_bytes))