You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
4.8 KiB
Python
94 lines
4.8 KiB
Python
from typing import List, Tuple
|
|
from PIL import Image
|
|
from pydantic import BaseModel, Field
|
|
from enum import Enum
|
|
import base64, io
|
|
from io import BytesIO
|
|
from typing import List, Tuple, Optional
|
|
|
|
class InpaintingWhen(Enum):
|
|
NEVER = "Never"
|
|
BEFORE_UPSCALING = "Before Upscaling/all"
|
|
BEFORE_RESTORE_FACE = "After Upscaling/Before Restore Face"
|
|
AFTER_ALL = "After All"
|
|
|
|
class FaceSwapUnit(BaseModel) :
|
|
|
|
# The image given in reference
|
|
source_img: str = Field(description='base64 reference image', examples=["...."], default=None)
|
|
# The checkpoint file
|
|
source_face : str = Field(description='face checkpoint (from models/faceswaplab/faces)',examples=["my_face.pkl"], default=None)
|
|
# base64 batch source images
|
|
batch_images: Tuple[str] = Field(description='list of base64 batch source images',examples=["....", "...."], default=None)
|
|
|
|
# Will blend faces if True
|
|
blend_faces: bool = Field(description='Will blend faces if True', default=True)
|
|
|
|
# Use same gender filtering
|
|
same_gender: bool = Field(description='Use same gender filtering', default=True)
|
|
|
|
# If True, discard images with low similarity
|
|
check_similarity : bool = Field(description='If True, discard images with low similarity', default=False)
|
|
# if True will compute similarity and add it to the image info
|
|
compute_similarity : bool = Field(description='If True will compute similarity and add it to the image info', default=False)
|
|
|
|
# Minimum similarity against the used face (reference, batch or checkpoint)
|
|
min_sim: float = Field(description='Minimum similarity against the used face (reference, batch or checkpoint)', default=0.0)
|
|
# Minimum similarity against the reference (reference or checkpoint if checkpoint is given)
|
|
min_ref_sim: float = Field(description='Minimum similarity against the reference (reference or checkpoint if checkpoint is given)', default=0.0)
|
|
|
|
# The face index to use for swapping
|
|
faces_index: Tuple[int] = Field(description='The face index to use for swapping, list of face numbers starting from 0', default=(0,))
|
|
|
|
|
|
class PostProcessingOptions (BaseModel):
|
|
face_restorer_name: str = Field(description='face restorer name', default=None)
|
|
restorer_visibility: float = Field(description='face restorer visibility', default=1, le=1, ge=0)
|
|
codeformer_weight: float = Field(description='face restorer codeformer weight', default=1, le=1, ge=0)
|
|
|
|
upscaler_name: str = Field(description='upscaler name', default=None)
|
|
scale: float = Field(description='upscaling scale', default=1, le=10, ge=0)
|
|
upscale_visibility: float = Field(description='upscaler visibility', default=1, le=1, ge=0)
|
|
|
|
inpainting_denoising_strengh : float = Field(description='Inpainting denoising strenght', default=0, lt=1, ge=0)
|
|
inpainting_prompt : str = Field(description='Inpainting denoising strenght',examples=["Portrait of a [gender]"], default="Portrait of a [gender]")
|
|
inpainting_negative_prompt : str = Field(description='Inpainting denoising strenght',examples=["Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation"], default="")
|
|
inpainting_steps : int = Field(description='Inpainting steps',examples=["Portrait of a [gender]"], ge=1, le=150, default=20)
|
|
inpainting_sampler : str = Field(description='Inpainting sampler',examples=["Euler"], default="Euler")
|
|
inpainting_when : InpaintingWhen = Field(description='When inpainting happens', examples=[e.value for e in InpaintingWhen.__members__.values()], default=InpaintingWhen.NEVER)
|
|
|
|
|
|
class FaceSwapRequest(BaseModel) :
|
|
image : str = Field(description='base64 reference image', examples=["...."], default=None)
|
|
units : List[FaceSwapUnit]
|
|
postprocessing : PostProcessingOptions
|
|
|
|
|
|
class FaceSwapResponse(BaseModel) :
|
|
images : List[str] = Field(description='base64 swapped image',default=None)
|
|
infos : List[str]
|
|
|
|
@property
|
|
def pil_images(self) :
|
|
return [base64_to_pil(img) for img in self.images]
|
|
|
|
def pil_to_base64(img):
|
|
if isinstance(img, str):
|
|
img = Image.open(img)
|
|
|
|
buffer = BytesIO()
|
|
img.save(buffer, format='PNG')
|
|
img_data = buffer.getvalue()
|
|
base64_data = base64.b64encode(img_data)
|
|
return base64_data.decode('utf-8')
|
|
|
|
def base64_to_pil(base64str : Optional[str]) -> Optional[Image.Image] :
|
|
if base64str is None :
|
|
return None
|
|
if 'base64,' in base64str: # check if the base64 string has a data URL scheme
|
|
base64_data = base64str.split('base64,')[-1]
|
|
img_bytes = base64.b64decode(base64_data)
|
|
else:
|
|
# if no data URL scheme, just decode
|
|
img_bytes = base64.b64decode(base64str)
|
|
return Image.open(io.BytesIO(img_bytes)) |