You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.3 KiB
Python
161 lines
5.3 KiB
Python
from typing import List, Tuple
|
|
from PIL import Image
|
|
from pydantic import BaseModel, Field
|
|
from enum import Enum
|
|
import base64, io
|
|
from io import BytesIO
|
|
from typing import List, Tuple, Optional
|
|
|
|
|
|
class InpaintingWhen(Enum):
|
|
NEVER = "Never"
|
|
BEFORE_UPSCALING = "Before Upscaling/all"
|
|
BEFORE_RESTORE_FACE = "After Upscaling/Before Restore Face"
|
|
AFTER_ALL = "After All"
|
|
|
|
|
|
class FaceSwapUnit(BaseModel):
|
|
# The image given in reference
|
|
source_img: str = Field(
|
|
description="base64 reference image",
|
|
examples=["...."],
|
|
default=None,
|
|
)
|
|
# The checkpoint file
|
|
source_face: str = Field(
|
|
description="face checkpoint (from models/faceswaplab/faces)",
|
|
examples=["my_face.pkl"],
|
|
default=None,
|
|
)
|
|
# base64 batch source images
|
|
batch_images: Tuple[str] = Field(
|
|
description="list of base64 batch source images",
|
|
examples=[
|
|
"....",
|
|
"....",
|
|
],
|
|
default=None,
|
|
)
|
|
|
|
# Will blend faces if True
|
|
blend_faces: bool = Field(description="Will blend faces if True", default=True)
|
|
|
|
# Use same gender filtering
|
|
same_gender: bool = Field(description="Use same gender filtering", default=True)
|
|
|
|
# If True, discard images with low similarity
|
|
check_similarity: bool = Field(
|
|
description="If True, discard images with low similarity", default=False
|
|
)
|
|
# if True will compute similarity and add it to the image info
|
|
compute_similarity: bool = Field(
|
|
description="If True will compute similarity and add it to the image info",
|
|
default=False,
|
|
)
|
|
|
|
# Minimum similarity against the used face (reference, batch or checkpoint)
|
|
min_sim: float = Field(
|
|
description="Minimum similarity against the used face (reference, batch or checkpoint)",
|
|
default=0.0,
|
|
)
|
|
# Minimum similarity against the reference (reference or checkpoint if checkpoint is given)
|
|
min_ref_sim: float = Field(
|
|
description="Minimum similarity against the reference (reference or checkpoint if checkpoint is given)",
|
|
default=0.0,
|
|
)
|
|
|
|
# The face index to use for swapping
|
|
faces_index: Tuple[int] = Field(
|
|
description="The face index to use for swapping, list of face numbers starting from 0",
|
|
default=(0,),
|
|
)
|
|
|
|
|
|
class PostProcessingOptions(BaseModel):
|
|
face_restorer_name: str = Field(description="face restorer name", default=None)
|
|
restorer_visibility: float = Field(
|
|
description="face restorer visibility", default=1, le=1, ge=0
|
|
)
|
|
codeformer_weight: float = Field(
|
|
description="face restorer codeformer weight", default=1, le=1, ge=0
|
|
)
|
|
|
|
upscaler_name: str = Field(description="upscaler name", default=None)
|
|
scale: float = Field(description="upscaling scale", default=1, le=10, ge=0)
|
|
upscale_visibility: float = Field(
|
|
description="upscaler visibility", default=1, le=1, ge=0
|
|
)
|
|
|
|
inpainting_denoising_strengh: float = Field(
|
|
description="Inpainting denoising strenght", default=0, lt=1, ge=0
|
|
)
|
|
inpainting_prompt: str = Field(
|
|
description="Inpainting denoising strenght",
|
|
examples=["Portrait of a [gender]"],
|
|
default="Portrait of a [gender]",
|
|
)
|
|
inpainting_negative_prompt: str = Field(
|
|
description="Inpainting denoising strenght",
|
|
examples=[
|
|
"Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation"
|
|
],
|
|
default="",
|
|
)
|
|
inpainting_steps: int = Field(
|
|
description="Inpainting steps",
|
|
examples=["Portrait of a [gender]"],
|
|
ge=1,
|
|
le=150,
|
|
default=20,
|
|
)
|
|
inpainting_sampler: str = Field(
|
|
description="Inpainting sampler", examples=["Euler"], default="Euler"
|
|
)
|
|
inpainting_when: InpaintingWhen = Field(
|
|
description="When inpainting happens",
|
|
examples=[e.value for e in InpaintingWhen.__members__.values()],
|
|
default=InpaintingWhen.NEVER,
|
|
)
|
|
|
|
|
|
class FaceSwapRequest(BaseModel):
|
|
image: str = Field(
|
|
description="base64 reference image",
|
|
examples=["...."],
|
|
default=None,
|
|
)
|
|
units: List[FaceSwapUnit]
|
|
postprocessing: PostProcessingOptions
|
|
|
|
|
|
class FaceSwapResponse(BaseModel):
|
|
images: List[str] = Field(description="base64 swapped image", default=None)
|
|
infos: List[str]
|
|
|
|
@property
|
|
def pil_images(self):
|
|
return [base64_to_pil(img) for img in self.images]
|
|
|
|
|
|
def pil_to_base64(img):
|
|
if isinstance(img, str):
|
|
img = Image.open(img)
|
|
|
|
buffer = BytesIO()
|
|
img.save(buffer, format="PNG")
|
|
img_data = buffer.getvalue()
|
|
base64_data = base64.b64encode(img_data)
|
|
return base64_data.decode("utf-8")
|
|
|
|
|
|
def base64_to_pil(base64str: Optional[str]) -> Optional[Image.Image]:
|
|
if base64str is None:
|
|
return None
|
|
if "base64," in base64str: # check if the base64 string has a data URL scheme
|
|
base64_data = base64str.split("base64,")[-1]
|
|
img_bytes = base64.b64decode(base64_data)
|
|
else:
|
|
# if no data URL scheme, just decode
|
|
img_bytes = base64.b64decode(base64str)
|
|
return Image.open(io.BytesIO(img_bytes))
|