You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
6.5 KiB
Python
197 lines
6.5 KiB
Python
import io
|
|
from typing import Optional
|
|
from PIL import Image, ImageChops, ImageOps, ImageFilter
|
|
import cv2
|
|
import numpy as np
|
|
from math import isqrt, ceil
|
|
import torch
|
|
from ifnude import detect
|
|
from scripts.faceswaplab_globals import NSFW_SCORE
|
|
from modules import processing
|
|
import base64
|
|
|
|
|
|
def check_against_nsfw(img):
|
|
shapes = []
|
|
chunks = detect(img)
|
|
for chunk in chunks:
|
|
shapes.append(chunk["score"] > NSFW_SCORE)
|
|
return any(shapes)
|
|
|
|
|
|
def pil_to_cv2(pil_img):
|
|
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
def cv2_to_pil(cv2_img):
|
|
return Image.fromarray(cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB))
|
|
|
|
|
|
def torch_to_pil(images):
|
|
"""
|
|
Convert a numpy image or a batch of images to a PIL image.
|
|
"""
|
|
images = images.cpu().permute(0, 2, 3, 1).numpy()
|
|
if images.ndim == 3:
|
|
images = images[None, ...]
|
|
images = (images * 255).round().astype("uint8")
|
|
pil_images = [Image.fromarray(image) for image in images]
|
|
return pil_images
|
|
|
|
|
|
def pil_to_torch(pil_images):
|
|
"""
|
|
Convert a PIL image or a list of PIL images to a torch tensor or a batch of torch tensors.
|
|
"""
|
|
if isinstance(pil_images, list):
|
|
numpy_images = [np.array(image) for image in pil_images]
|
|
torch_images = torch.from_numpy(np.stack(numpy_images)).permute(0, 3, 1, 2)
|
|
return torch_images
|
|
|
|
numpy_image = np.array(pil_images)
|
|
torch_image = torch.from_numpy(numpy_image).permute(2, 0, 1)
|
|
return torch_image
|
|
|
|
|
|
from collections import Counter
|
|
|
|
|
|
def create_square_image(image_list):
|
|
"""
|
|
Creates a square image by combining multiple images in a grid pattern.
|
|
|
|
Args:
|
|
image_list (list): List of PIL Image objects to be combined.
|
|
|
|
Returns:
|
|
PIL Image object: The resulting square image.
|
|
None: If the image_list is empty or contains only one image.
|
|
"""
|
|
|
|
# Count the occurrences of each image size in the image_list
|
|
size_counter = Counter(image.size for image in image_list)
|
|
|
|
# Get the most common image size (size with the highest count)
|
|
common_size = size_counter.most_common(1)[0][0]
|
|
|
|
# Filter the image_list to include only images with the common size
|
|
image_list = [image for image in image_list if image.size == common_size]
|
|
|
|
# Get the dimensions (width and height) of the common size
|
|
size = common_size
|
|
|
|
# If there are more than one image in the image_list
|
|
if len(image_list) > 1:
|
|
num_images = len(image_list)
|
|
|
|
# Calculate the number of rows and columns for the grid
|
|
rows = isqrt(num_images)
|
|
cols = ceil(num_images / rows)
|
|
|
|
# Calculate the size of the square image
|
|
square_size = (cols * size[0], rows * size[1])
|
|
|
|
# Create a new RGB image with the square size
|
|
square_image = Image.new("RGB", square_size)
|
|
|
|
# Paste each image onto the square image at the appropriate position
|
|
for i, image in enumerate(image_list):
|
|
row = i // cols
|
|
col = i % cols
|
|
|
|
square_image.paste(image, (col * size[0], row * size[1]))
|
|
|
|
# Return the resulting square image
|
|
return square_image
|
|
|
|
# Return None if there are no images or only one image in the image_list
|
|
return None
|
|
|
|
|
|
def create_mask(image, box_coords):
|
|
width, height = image.size
|
|
mask = Image.new("L", (width, height), 255)
|
|
x1, y1, x2, y2 = box_coords
|
|
for x in range(width):
|
|
for y in range(height):
|
|
if x1 <= x <= x2 and y1 <= y <= y2:
|
|
mask.putpixel((x, y), 255)
|
|
else:
|
|
mask.putpixel((x, y), 0)
|
|
return mask
|
|
|
|
|
|
def apply_mask(
|
|
img: Image.Image, p: processing.StableDiffusionProcessing, batch_index: int
|
|
) -> Image.Image:
|
|
"""
|
|
Apply mask overlay and color correction to an image if enabled
|
|
|
|
Args:
|
|
img: PIL Image objects.
|
|
p : The processing object
|
|
batch_index : the batch index
|
|
|
|
Returns:
|
|
PIL Image object
|
|
"""
|
|
if isinstance(p, processing.StableDiffusionProcessingImg2Img):
|
|
if p.inpaint_full_res:
|
|
overlays = p.overlay_images
|
|
if overlays is None or batch_index >= len(overlays):
|
|
return img
|
|
overlay: Image.Image = overlays[batch_index]
|
|
overlay = overlay.resize((img.size), resample=Image.Resampling.LANCZOS)
|
|
img = img.copy()
|
|
img.paste(overlay, (0, 0), overlay)
|
|
return img
|
|
|
|
img = processing.apply_overlay(img, p.paste_to, batch_index, p.overlay_images)
|
|
if p.color_corrections is not None and batch_index < len(p.color_corrections):
|
|
img = processing.apply_color_correction(
|
|
p.color_corrections[batch_index], img
|
|
)
|
|
return img
|
|
|
|
|
|
def prepare_mask(
|
|
mask: Image.Image, p: processing.StableDiffusionProcessing
|
|
) -> Image.Image:
|
|
"""
|
|
Prepare an image mask for the inpainting process. (This comes from controlnet)
|
|
|
|
This function takes as input a PIL Image object and an instance of the
|
|
StableDiffusionProcessing class, and performs the following steps to prepare the mask:
|
|
|
|
1. Convert the mask to grayscale (mode "L").
|
|
2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
|
|
invert the mask colors.
|
|
3. If the 'mask_blur' attribute of the processing instance is greater than 0,
|
|
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
|
|
|
|
Args:
|
|
mask (Image.Image): The input mask as a PIL Image object.
|
|
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
|
|
containing the processing parameters.
|
|
|
|
Returns:
|
|
mask (Image.Image): The prepared mask as a PIL Image object.
|
|
"""
|
|
mask = mask.convert("L")
|
|
# FIXME : Properly fix blur
|
|
# if getattr(p, "mask_blur", 0) > 0:
|
|
# mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
|
|
return mask
|
|
|
|
|
|
def base64_to_pil(base64str: Optional[str]) -> Optional[Image.Image]:
|
|
if base64str is None:
|
|
return None
|
|
if "base64," in base64str: # check if the base64 string has a data URL scheme
|
|
base64_data = base64str.split("base64,")[-1]
|
|
img_bytes = base64.b64decode(base64_data)
|
|
else:
|
|
# if no data URL scheme, just decode
|
|
img_bytes = base64.b64decode(base64str)
|
|
return Image.open(io.BytesIO(img_bytes))
|