You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
9.7 KiB
Python
226 lines
9.7 KiB
Python
import importlib
|
|
from scripts.faceswaplab_api import faceswaplab_api
|
|
from scripts.faceswaplab_settings import faceswaplab_settings
|
|
from scripts.faceswaplab_ui import faceswaplab_tab, faceswaplab_unit_ui
|
|
from scripts.faceswaplab_utils.models_utils import get_current_model, get_face_checkpoints
|
|
|
|
from scripts import (faceswaplab_globals)
|
|
from scripts.faceswaplab_swapping import swapper
|
|
from scripts.faceswaplab_utils import faceswaplab_logging, imgutils
|
|
from scripts.faceswaplab_utils import models_utils
|
|
from scripts.faceswaplab_postprocessing import upscaling
|
|
import numpy as np
|
|
|
|
#Reload all the modules when using "apply and restart"
|
|
#This is mainly done for development purposes
|
|
importlib.reload(swapper)
|
|
importlib.reload(faceswaplab_logging)
|
|
importlib.reload(faceswaplab_globals)
|
|
importlib.reload(imgutils)
|
|
importlib.reload(upscaling)
|
|
importlib.reload(faceswaplab_settings)
|
|
importlib.reload(models_utils)
|
|
importlib.reload(faceswaplab_unit_ui)
|
|
importlib.reload(faceswaplab_api)
|
|
|
|
import os
|
|
from dataclasses import fields
|
|
from pprint import pformat
|
|
from typing import List, Optional, Tuple
|
|
|
|
import dill as pickle
|
|
import gradio as gr
|
|
import modules.scripts as scripts
|
|
from modules import script_callbacks, scripts
|
|
from insightface.app.common import Face
|
|
from modules import scripts, shared
|
|
from modules.images import save_image, image_grid
|
|
from modules.processing import (Processed, StableDiffusionProcessing,
|
|
StableDiffusionProcessingImg2Img)
|
|
from modules.shared import opts
|
|
from PIL import Image
|
|
|
|
from scripts.faceswaplab_utils.imgutils import (pil_to_cv2,check_against_nsfw)
|
|
from scripts.faceswaplab_utils.faceswaplab_logging import logger, save_img_debug
|
|
from scripts.faceswaplab_globals import VERSION_FLAG
|
|
from scripts.faceswaplab_postprocessing.postprocessing_options import PostProcessingOptions
|
|
from scripts.faceswaplab_postprocessing.postprocessing import enhance_image
|
|
from scripts.faceswaplab_ui.faceswaplab_unit_settings import FaceSwapUnitSettings
|
|
|
|
|
|
EXTENSION_PATH=os.path.join("extensions","sd-webui-faceswaplab")
|
|
|
|
|
|
# Register the tab, done here to prevent it from being added twice
|
|
script_callbacks.on_ui_tabs(faceswaplab_tab.on_ui_tabs)
|
|
|
|
try:
|
|
import modules.script_callbacks as script_callbacks
|
|
script_callbacks.on_app_started(faceswaplab_api.faceswaplab_api)
|
|
except:
|
|
pass
|
|
|
|
|
|
class FaceSwapScript(scripts.Script):
|
|
|
|
def __init__(self) -> None:
|
|
logger.info(f"FaceSwapLab {VERSION_FLAG}")
|
|
super().__init__()
|
|
|
|
@property
|
|
def units_count(self) :
|
|
return opts.data.get("faceswaplab_units_count", 3)
|
|
|
|
@property
|
|
def upscaled_swapper_in_generated(self) :
|
|
return opts.data.get("faceswaplab_upscaled_swapper", False)
|
|
|
|
@property
|
|
def upscaled_swapper_in_source(self) :
|
|
return opts.data.get("faceswaplab_upscaled_swapper_in_source", False)
|
|
|
|
@property
|
|
def enabled(self) -> bool :
|
|
"""Return True if any unit is enabled and the state is not interupted"""
|
|
return any([u.enable for u in self.units]) and not shared.state.interrupted
|
|
|
|
@property
|
|
def keep_original_images(self) :
|
|
return opts.data.get("faceswaplab_keep_original", False)
|
|
|
|
@property
|
|
def swap_in_generated_units(self) :
|
|
return [u for u in self.units if u.swap_in_generated and u.enable]
|
|
|
|
@property
|
|
def swap_in_source_units(self) :
|
|
return [u for u in self.units if u.swap_in_source and u.enable]
|
|
|
|
def title(self):
|
|
return f"faceswaplab"
|
|
|
|
def show(self, is_img2img):
|
|
return scripts.AlwaysVisible
|
|
|
|
|
|
def ui(self, is_img2img):
|
|
with gr.Accordion(f"FaceSwapLab {VERSION_FLAG}", open=False):
|
|
components = []
|
|
for i in range(1, self.units_count + 1):
|
|
components += faceswaplab_unit_ui.faceswap_unit_ui(is_img2img, i)
|
|
upscaler = faceswaplab_tab.upscaler_ui()
|
|
# If the order is modified, the before_process should be changed accordingly.
|
|
return components + upscaler
|
|
|
|
# def make_script_first(self,p: StableDiffusionProcessing) :
|
|
# FIXME : not really useful, will only impact postprocessing (kept for further testing)
|
|
# runner : scripts.ScriptRunner = p.scripts
|
|
# alwayson = runner.alwayson_scripts
|
|
# alwayson.pop(alwayson.index(self))
|
|
# alwayson.insert(0, self)
|
|
# print("Running in ", alwayson.index(self), "position")
|
|
# logger.info("Running scripts : %s", pformat(runner.alwayson_scripts))
|
|
|
|
def read_config(self, p : StableDiffusionProcessing, *components) :
|
|
# The order of processing for the components is important
|
|
# The method first process faceswap units then postprocessing units
|
|
|
|
# self.make_first_script(p)
|
|
|
|
self.units: List[FaceSwapUnitSettings] = []
|
|
|
|
#Parse and convert units flat components into FaceSwapUnitSettings
|
|
for i in range(0, self.units_count):
|
|
self.units += [FaceSwapUnitSettings.get_unit_configuration(i, components)]
|
|
|
|
for i, u in enumerate(self.units):
|
|
logger.debug("%s, %s", pformat(i), pformat(u))
|
|
|
|
#Parse the postprocessing options
|
|
#We must first find where to start from (after face swapping units)
|
|
len_conf: int = len(fields(FaceSwapUnitSettings))
|
|
shift: int = self.units_count * len_conf
|
|
self.postprocess_options = PostProcessingOptions(
|
|
*components[shift : shift + len(fields(PostProcessingOptions))]
|
|
)
|
|
logger.debug("%s", pformat(self.postprocess_options))
|
|
|
|
if self.enabled :
|
|
p.do_not_save_samples = not self.keep_original_images
|
|
|
|
|
|
def process(self, p: StableDiffusionProcessing, *components):
|
|
self.read_config(p, *components)
|
|
|
|
#If is instance of img2img, we check if face swapping in source is required.
|
|
if isinstance(p, StableDiffusionProcessingImg2Img):
|
|
if self.enabled and len(self.swap_in_source_units) > 0:
|
|
init_images : List[Tuple[Optional[Image.Image], Optional[str]]] = [(img,None) for img in p.init_images]
|
|
new_inits = swapper.process_images_units(get_current_model(), self.swap_in_source_units,images=init_images, upscaled_swapper=self.upscaled_swapper_in_source,force_blend=True)
|
|
logger.info(f"processed init images: {len(init_images)}")
|
|
if new_inits is not None :
|
|
p.init_images = [img[0] for img in new_inits]
|
|
|
|
|
|
def postprocess(self, p : StableDiffusionProcessing, processed: Processed, *args):
|
|
if self.enabled :
|
|
# Get the original images without the grid
|
|
orig_images : List[Image.Image] = processed.images[processed.index_of_first_image:]
|
|
orig_infotexts : List[str] = processed.infotexts[processed.index_of_first_image:]
|
|
|
|
keep_original = self.keep_original_images
|
|
|
|
# These are were images and infos of swapped images will be stored
|
|
images = []
|
|
infotexts = []
|
|
if (len(self.swap_in_generated_units))>0 :
|
|
for i,(img,info) in enumerate(zip(orig_images, orig_infotexts)):
|
|
batch_index = i%p.batch_size
|
|
swapped_images = swapper.process_images_units(get_current_model(), self.swap_in_generated_units, images=[(img,info)], upscaled_swapper=self.upscaled_swapper_in_generated)
|
|
if swapped_images is None :
|
|
continue
|
|
|
|
logger.info(f"{len(swapped_images)} images swapped")
|
|
for swp_img, new_info in swapped_images :
|
|
img = swp_img # Will only swap the last image in the batch in next units (FIXME : hard to fix properly but not really critical)
|
|
|
|
if swp_img is not None :
|
|
|
|
save_img_debug(swp_img,"Before apply mask")
|
|
swp_img = imgutils.apply_mask(swp_img, p, batch_index)
|
|
save_img_debug(swp_img,"After apply mask")
|
|
|
|
try :
|
|
if self.postprocess_options is not None:
|
|
swp_img = enhance_image(swp_img, self.postprocess_options)
|
|
except Exception as e:
|
|
logger.error("Failed to upscale : %s", e)
|
|
|
|
logger.info("Add swp image to processed")
|
|
images.append(swp_img)
|
|
infotexts.append(new_info)
|
|
if p.outpath_samples and opts.samples_save :
|
|
save_image(swp_img, p.outpath_samples, "", p.all_seeds[batch_index], p.all_prompts[batch_index], opts.samples_format,info=new_info, p=p, suffix="-swapped")
|
|
else :
|
|
logger.error("swp image is None")
|
|
else :
|
|
keep_original=True
|
|
|
|
|
|
# Generate grid :
|
|
if opts.return_grid and len(images) > 1:
|
|
# FIXME :Use sd method, not that if blended is not active, the result will be a bit messy.
|
|
grid = imgutils.create_square_image(images)
|
|
text = processed.infotexts[0]
|
|
infotexts.insert(0, text)
|
|
if opts.enable_pnginfo:
|
|
grid.info["parameters"] = text
|
|
images.insert(0, grid)
|
|
|
|
if keep_original:
|
|
# If we want to keep original images, we add all existing (including grid this time)
|
|
images += processed.images
|
|
infotexts += processed.infotexts
|
|
|
|
processed.images = images
|
|
processed.infotexts = infotexts |