You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

283 lines
11 KiB
Python

from typing import List
from scripts.faceswaplab_ui.faceswaplab_inpainting_ui import face_inpainting_ui
from scripts.faceswaplab_utils.face_checkpoints_utils import get_face_checkpoints
import gradio as gr
from modules.shared import opts
from modules import shared
def faceswap_unit_advanced_options(
is_img2img: bool, unit_num: int = 1, id_prefix: str = "faceswaplab_"
) -> List[gr.components.Component]:
with gr.Accordion(f"Post-Processing & Advanced Mask Options", open=False):
gr.Markdown("""Post-processing and mask settings for unit faces""")
with gr.Row():
face_restorer_name = gr.Radio(
label="Restore Face",
choices=["None"] + [x.name() for x in shared.face_restorers],
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_face_restorer",
"None",
),
type="value",
elem_id=f"{id_prefix}_face{unit_num}_face_restorer",
)
with gr.Column():
face_restorer_visibility = gr.Slider(
0,
1,
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_face_restorer_visibility",
1.0,
),
step=0.001,
label="Restore visibility",
elem_id=f"{id_prefix}_face{unit_num}_face_restorer_visibility",
)
codeformer_weight = gr.Slider(
0,
1,
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_face_restorer_weight", 1.0
),
step=0.001,
label="codeformer weight",
elem_id=f"{id_prefix}_face{unit_num}_face_restorer_weight",
)
upscaler_name = gr.Dropdown(
choices=[upscaler.name for upscaler in shared.sd_upscalers],
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_upscaler", ""
),
label="Upscaler",
elem_id=f"{id_prefix}_face{unit_num}_upscaler",
)
improved_mask = gr.Checkbox(
lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_improved_mask", False
),
interactive=True,
label="Use improved segmented mask (use pastenet to mask only the face)",
elem_id=f"{id_prefix}_face{unit_num}_improved_mask",
)
color_corrections = gr.Checkbox(
lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_fixcolor", False
),
interactive=True,
label="Use color corrections",
elem_id=f"{id_prefix}_face{unit_num}_color_corrections",
)
sharpen_face = gr.Checkbox(
lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_sharpen", False
),
interactive=True,
label="sharpen face",
elem_id=f"{id_prefix}_face{unit_num}_sharpen_face",
)
erosion_factor = gr.Slider(
0.0,
10.0,
lambda: opts.data.get("faceswaplab_default_upscaled_swapper_erosion", 1.0),
step=0.01,
label="Upscaled swapper mask erosion factor, 1 = default behaviour.",
elem_id=f"{id_prefix}_face{unit_num}_erosion_factor",
)
return [
face_restorer_name,
face_restorer_visibility,
codeformer_weight,
upscaler_name,
improved_mask,
color_corrections,
sharpen_face,
erosion_factor,
]
def faceswap_unit_ui(
is_img2img: bool, unit_num: int = 1, id_prefix: str = "faceswaplab"
) -> List[gr.components.Component]:
with gr.Tab(f"Face {unit_num}"):
with gr.Column():
gr.Markdown(
"""Reference is an image. First face will be extracted.
First face of batches sources will be extracted and used as input (or blended if blend is activated)."""
)
with gr.Row():
img = gr.components.Image(
type="pil",
label="Reference",
elem_id=f"{id_prefix}_face{unit_num}_reference_image",
)
batch_files = gr.components.File(
type="file",
file_count="multiple",
label="Batch Sources Images",
optional=True,
elem_id=f"{id_prefix}_face{unit_num}_batch_source_face_files",
)
gr.Markdown(
"""Face checkpoint built with the checkpoint builder in tools. Will overwrite reference image."""
)
with gr.Row():
face = gr.Dropdown(
choices=get_face_checkpoints(),
label="Face Checkpoint (precedence over reference face)",
elem_id=f"{id_prefix}_face{unit_num}_face_checkpoint",
)
refresh = gr.Button(
value="",
variant="tool",
elem_id=f"{id_prefix}_face{unit_num}_refresh_checkpoints",
)
def refresh_fn(selected: str) -> None:
return gr.Dropdown.update(
value=selected, choices=get_face_checkpoints()
)
refresh.click(fn=refresh_fn, inputs=face, outputs=face)
with gr.Row():
enable = gr.Checkbox(
False,
placeholder="enable",
label="Enable",
elem_id=f"{id_prefix}_face{unit_num}_enable",
)
blend_faces = gr.Checkbox(
True,
placeholder="Blend Faces",
label="Blend Faces ((Source|Checkpoint)+References = 1)",
elem_id=f"{id_prefix}_face{unit_num}_blend_faces",
interactive=True,
)
gr.Markdown(
"""Select the face to be swapped, you can sort by size or use the same gender as the desired face:"""
)
with gr.Row():
same_gender = gr.Checkbox(
False,
placeholder="Same Gender",
label="Same Gender",
elem_id=f"{id_prefix}_face{unit_num}_same_gender",
)
sort_by_size = gr.Checkbox(
False,
placeholder="Sort by size",
label="Sort by size (larger>smaller)",
elem_id=f"{id_prefix}_face{unit_num}_sort_by_size",
)
target_faces_index = gr.Textbox(
value=f"{unit_num-1}",
placeholder="Which face to swap (comma separated), start from 0 (by gender if same_gender is enabled)",
label="Target face : Comma separated face number(s)",
elem_id=f"{id_prefix}_face{unit_num}_target_faces_index",
)
gr.Markdown(
"""The following will only affect reference face image (and is not affected by sort by size) :"""
)
reference_faces_index = gr.Number(
value=0,
precision=0,
minimum=0,
placeholder="Which face to get from reference image start from 0",
label="Reference source face : start from 0",
elem_id=f"{id_prefix}_face{unit_num}_reference_face_index",
)
gr.Markdown(
"""Configure swapping. Swapping can occure before img2img, after or both :""",
visible=is_img2img,
)
swap_in_source = gr.Checkbox(
False,
placeholder="Swap face in source image",
label="Swap in source image (blended face)",
visible=is_img2img,
elem_id=f"{id_prefix}_face{unit_num}_swap_in_source",
)
swap_in_generated = gr.Checkbox(
True,
placeholder="Swap face in generated image",
label="Swap in generated image",
visible=is_img2img,
elem_id=f"{id_prefix}_face{unit_num}_swap_in_generated",
)
with gr.Accordion("Similarity", open=False):
gr.Markdown("""Discard images with low similarity or no faces :""")
with gr.Row():
check_similarity = gr.Checkbox(
False,
placeholder="discard",
label="Check similarity",
elem_id=f"{id_prefix}_face{unit_num}_check_similarity",
)
compute_similarity = gr.Checkbox(
False,
label="Compute similarity",
elem_id=f"{id_prefix}_face{unit_num}_compute_similarity",
)
min_sim = gr.Slider(
0,
1,
0,
step=0.01,
label="Min similarity",
elem_id=f"{id_prefix}_face{unit_num}_min_similarity",
)
min_ref_sim = gr.Slider(
0,
1,
0,
step=0.01,
label="Min reference similarity",
elem_id=f"{id_prefix}_face{unit_num}_min_ref_similarity",
)
pre_inpainting = face_inpainting_ui(
name="Pre-Inpainting (Before swapping)",
id_prefix=f"{id_prefix}_face{unit_num}_preinpainting",
description="Pre-inpainting sends face to inpainting before swapping",
)
options = faceswap_unit_advanced_options(is_img2img, unit_num, id_prefix)
post_inpainting = face_inpainting_ui(
name="Post-Inpainting (After swapping)",
id_prefix=f"{id_prefix}_face{unit_num}_postinpainting",
description="Post-inpainting sends face to inpainting after swapping",
)
gradio_components: List[gr.components.Component] = (
[
img,
face,
batch_files,
blend_faces,
enable,
same_gender,
sort_by_size,
check_similarity,
compute_similarity,
min_sim,
min_ref_sim,
target_faces_index,
reference_faces_index,
swap_in_source,
swap_in_generated,
]
+ pre_inpainting
+ options
+ post_inpainting
)
# If changed, you need to change FaceSwapUnitSettings accordingly
# ORDER of parameters is IMPORTANT. It should match the result of FaceSwapUnitSettings
return gradio_components