You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
293 lines
9.5 KiB
Python
293 lines
9.5 KiB
Python
# Keep a copy of this file here, it is used by the server side api
|
|
|
|
from typing import List, Tuple
|
|
from PIL import Image
|
|
from pydantic import BaseModel, Field
|
|
from enum import Enum
|
|
import base64, io
|
|
from io import BytesIO
|
|
from typing import List, Tuple, Optional
|
|
import numpy as np
|
|
import requests
|
|
import safetensors
|
|
|
|
|
|
class InpaintingWhen(Enum):
|
|
NEVER = "Never"
|
|
BEFORE_UPSCALING = "Before Upscaling/all"
|
|
BEFORE_RESTORE_FACE = "After Upscaling/Before Restore Face"
|
|
AFTER_ALL = "After All"
|
|
|
|
|
|
class InpaintingOptions(BaseModel):
|
|
inpainting_denoising_strengh: float = Field(
|
|
description="Inpainting denoising strenght", default=0, lt=1, ge=0
|
|
)
|
|
inpainting_prompt: str = Field(
|
|
description="Inpainting denoising strenght",
|
|
examples=["Portrait of a [gender]"],
|
|
default="Portrait of a [gender]",
|
|
)
|
|
inpainting_negative_prompt: str = Field(
|
|
description="Inpainting denoising strenght",
|
|
examples=[
|
|
"Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation"
|
|
],
|
|
default="",
|
|
)
|
|
inpainting_steps: int = Field(
|
|
description="Inpainting steps",
|
|
examples=["Portrait of a [gender]"],
|
|
ge=1,
|
|
le=150,
|
|
default=20,
|
|
)
|
|
inpainting_sampler: str = Field(
|
|
description="Inpainting sampler", examples=["Euler"], default="Euler"
|
|
)
|
|
inpainting_model: str = Field(
|
|
description="Inpainting model", examples=["Current"], default="Current"
|
|
)
|
|
|
|
|
|
class InswappperOptions(BaseModel):
|
|
face_restorer_name: str = Field(
|
|
description="face restorer name", default="CodeFormer"
|
|
)
|
|
restorer_visibility: float = Field(
|
|
description="face restorer visibility", default=1, le=1, ge=0
|
|
)
|
|
codeformer_weight: float = Field(
|
|
description="face restorer codeformer weight", default=1, le=1, ge=0
|
|
)
|
|
upscaler_name: str = Field(description="upscaler name", default=None)
|
|
improved_mask: bool = Field(description="Use Improved Mask", default=False)
|
|
color_corrections: bool = Field(description="Use Color Correction", default=False)
|
|
sharpen: bool = Field(description="Sharpen Image", default=False)
|
|
erosion_factor: float = Field(description="Erosion Factor", default=1, le=10, ge=0)
|
|
|
|
|
|
class FaceSwapUnit(BaseModel):
|
|
# The image given in reference
|
|
source_img: str = Field(
|
|
description="base64 reference image",
|
|
examples=["...."],
|
|
default=None,
|
|
)
|
|
# The checkpoint file
|
|
source_face: str = Field(
|
|
description="face checkpoint (from models/faceswaplab/faces)",
|
|
examples=["my_face.safetensors"],
|
|
default=None,
|
|
)
|
|
# base64 batch source images
|
|
batch_images: Tuple[str] = Field(
|
|
description="list of base64 batch source images",
|
|
examples=[
|
|
"....",
|
|
"....",
|
|
],
|
|
default=None,
|
|
)
|
|
|
|
# Will blend faces if True
|
|
blend_faces: bool = Field(description="Will blend faces if True", default=True)
|
|
|
|
# Use same gender filtering
|
|
same_gender: bool = Field(description="Use same gender filtering", default=False)
|
|
|
|
# Use same gender filtering
|
|
sort_by_size: bool = Field(description="Sort Faces by size", default=False)
|
|
|
|
# If True, discard images with low similarity
|
|
check_similarity: bool = Field(
|
|
description="If True, discard images with low similarity", default=False
|
|
)
|
|
# if True will compute similarity and add it to the image info
|
|
compute_similarity: bool = Field(
|
|
description="If True will compute similarity and add it to the image info",
|
|
default=False,
|
|
)
|
|
|
|
# Minimum similarity against the used face (reference, batch or checkpoint)
|
|
min_sim: float = Field(
|
|
description="Minimum similarity against the used face (reference, batch or checkpoint)",
|
|
default=0.0,
|
|
)
|
|
# Minimum similarity against the reference (reference or checkpoint if checkpoint is given)
|
|
min_ref_sim: float = Field(
|
|
description="Minimum similarity against the reference (reference or checkpoint if checkpoint is given)",
|
|
default=0.0,
|
|
)
|
|
|
|
# The face index to use for swapping
|
|
faces_index: Tuple[int] = Field(
|
|
description="The face index to use for swapping, list of face numbers starting from 0",
|
|
default=(0,),
|
|
)
|
|
|
|
reference_face_index: int = Field(
|
|
description="The face index to use to extract face from reference",
|
|
default=0,
|
|
)
|
|
|
|
pre_inpainting: Optional[InpaintingOptions] = Field(
|
|
description="Inpainting options",
|
|
default=None,
|
|
)
|
|
|
|
swapping_options: Optional[InswappperOptions] = Field(
|
|
description="PostProcessing & Mask options",
|
|
default=None,
|
|
)
|
|
|
|
post_inpainting: Optional[InpaintingOptions] = Field(
|
|
description="Inpainting options",
|
|
default=None,
|
|
)
|
|
|
|
def get_batch_images(self) -> List[Image.Image]:
|
|
images = []
|
|
if self.batch_images:
|
|
for img in self.batch_images:
|
|
images.append(base64_to_pil(img))
|
|
return images
|
|
|
|
|
|
class PostProcessingOptions(BaseModel):
|
|
face_restorer_name: str = Field(description="face restorer name", default=None)
|
|
restorer_visibility: float = Field(
|
|
description="face restorer visibility", default=1, le=1, ge=0
|
|
)
|
|
codeformer_weight: float = Field(
|
|
description="face restorer codeformer weight", default=1, le=1, ge=0
|
|
)
|
|
|
|
upscaler_name: str = Field(description="upscaler name", default=None)
|
|
scale: float = Field(description="upscaling scale", default=1, le=10, ge=0)
|
|
upscaler_visibility: float = Field(
|
|
description="upscaler visibility", default=1, le=1, ge=0
|
|
)
|
|
inpainting_when: InpaintingWhen = Field(
|
|
description="When inpainting happens",
|
|
examples=[e.value for e in InpaintingWhen.__members__.values()],
|
|
default=InpaintingWhen.NEVER,
|
|
)
|
|
|
|
inpainting_options: Optional[InpaintingOptions] = Field(
|
|
description="Inpainting options",
|
|
default=None,
|
|
)
|
|
|
|
|
|
class FaceSwapRequest(BaseModel):
|
|
image: str = Field(
|
|
description="base64 reference image",
|
|
examples=["...."],
|
|
default=None,
|
|
)
|
|
units: List[FaceSwapUnit]
|
|
postprocessing: Optional[PostProcessingOptions] = None
|
|
|
|
|
|
class FaceSwapResponse(BaseModel):
|
|
images: List[str] = Field(description="base64 swapped image", default=None)
|
|
infos: Optional[List[str]] # not really used atm
|
|
|
|
@property
|
|
def pil_images(self) -> Image.Image:
|
|
return [base64_to_pil(img) for img in self.images]
|
|
|
|
|
|
class FaceSwapCompareRequest(BaseModel):
|
|
image1: str = Field(
|
|
description="base64 reference image",
|
|
examples=["...."],
|
|
default=None,
|
|
)
|
|
image2: str = Field(
|
|
description="base64 reference image",
|
|
examples=["...."],
|
|
default=None,
|
|
)
|
|
|
|
|
|
class FaceSwapExtractRequest(BaseModel):
|
|
images: List[str] = Field(
|
|
description="base64 reference image",
|
|
examples=["...."],
|
|
default=None,
|
|
)
|
|
postprocessing: Optional[PostProcessingOptions]
|
|
|
|
|
|
class FaceSwapExtractResponse(BaseModel):
|
|
images: List[str] = Field(description="base64 face images", default=None)
|
|
|
|
@property
|
|
def pil_images(self) -> Image.Image:
|
|
return [base64_to_pil(img) for img in self.images]
|
|
|
|
|
|
def pil_to_base64(img: Image.Image) -> np.array: # type:ignore
|
|
if isinstance(img, str):
|
|
img = Image.open(img)
|
|
|
|
buffer = BytesIO()
|
|
img.save(buffer, format="PNG")
|
|
img_data = buffer.getvalue()
|
|
base64_data = base64.b64encode(img_data)
|
|
return base64_data.decode("utf-8")
|
|
|
|
|
|
def base64_to_pil(base64str: Optional[str]) -> Optional[Image.Image]:
|
|
if base64str is None:
|
|
return None
|
|
if "base64," in base64str: # check if the base64 string has a data URL scheme
|
|
base64_data = base64str.split("base64,")[-1]
|
|
img_bytes = base64.b64decode(base64_data)
|
|
else:
|
|
# if no data URL scheme, just decode
|
|
img_bytes = base64.b64decode(base64str)
|
|
return Image.open(io.BytesIO(img_bytes))
|
|
|
|
|
|
def compare_faces(
|
|
image1: Image.Image, image2: Image.Image, base_url: str = "http://localhost:7860"
|
|
) -> float:
|
|
request = FaceSwapCompareRequest(
|
|
image1=pil_to_base64(image1),
|
|
image2=pil_to_base64(image2),
|
|
)
|
|
|
|
result = requests.post(
|
|
url=f"{base_url}/faceswaplab/compare",
|
|
data=request.json(),
|
|
headers={"Content-Type": "application/json; charset=utf-8"},
|
|
)
|
|
|
|
return float(result.text)
|
|
|
|
|
|
def safetensors_to_base64(file_path: str) -> str:
|
|
with open(file_path, "rb") as file:
|
|
file_bytes = file.read()
|
|
return "data:application/face;base64," + base64.b64encode(file_bytes).decode(
|
|
"utf-8"
|
|
)
|
|
|
|
|
|
def base64_to_safetensors(base64str: str, output_path: str) -> None:
|
|
try:
|
|
base64_data = base64str.split("base64,")[-1]
|
|
file_bytes = base64.b64decode(base64_data)
|
|
with open(output_path, "wb") as file:
|
|
file.write(file_bytes)
|
|
with safetensors.safe_open(output_path, framework="pt") as f:
|
|
print(output_path, "keys =", f.keys())
|
|
except Exception as e:
|
|
print("Error : failed to convert base64 string to safetensor", e)
|
|
import traceback
|
|
|
|
traceback.print_exc()
|