Merge pull request #19 from glucauze/v.1.2.0

V.1.2.0. Please reads documentation and changelog
main
Tran Xen 2 years ago committed by GitHub
commit 7282abf9a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,3 +1,23 @@
# 1.2.0 :
This version changes quite a few things.
+ The upscaled inswapper options are now moved to each face unit. This makes it possible to fine-tune the settings for each face.
+ Upscaled inswapper configuration in sd now concerns default values in each unit's interface.
+ Pre- and post-inpainting is now possible for each face. Here too, default options are set in the main sd settings.
+ Codeformer is no longer the default in post-processing. Don't be surprised if you get bad results by default. You can set it to default in the application's global settings
Bug fixes :
+ The problem of saving the grid should be solved.
+ The downscaling problem for inpainting should be solved.
+ Change model download logic and add checksum. This should prevent some bugs.
In terms of the API, it is now possible to create a remote checkpoint and use it in units. See the example in client_api or the tests in the tests directory.
# 1.1.2 : # 1.1.2 :
+ Switch face checkpoint format from pkl to safetensors + Switch face checkpoint format from pkl to safetensors

@ -14,12 +14,16 @@ While FaceSwapLab is still under development, it has reached a good level of sta
In short: In short:
+ **Ethical Guideline:** This extension should not be forked to create a public, easy way to circumvent NSFW filtering. + **Ethical Guideline:** This extension should not be forked to create a public, easy way to bypass NSFW filtering. If you modify it for this purpose, keep it private, or you'll be banned.
+ **License:** This software is distributed under the terms of the GNU Affero General Public License (AGPL), version 3 or later. + **License:** This software is distributed under the terms of the GNU Affero General Public License (AGPL), version 3 or later.
+ **Model License:** This software uses InsightFace's pre-trained models, which are available for non-commercial research purposes only. + **Model License:** This software uses InsightFace's pre-trained models, which are available for non-commercial research purposes only.
More on this here : https://glucauze.github.io/sd-webui-faceswaplab/ More on this here : https://glucauze.github.io/sd-webui-faceswaplab/
### Known problems (wontfix):
+ Older versions of gradio don't work well with the extension. See this bug : https://github.com/glucauze/sd-webui-faceswaplab/issues/5
### Features ### Features
+ **Face Unit Concept**: Similar to controlNet, the program introduces the concept of a face unit. You can configure up to 10 units (3 units are the default setting) in the program settings (sd). + **Face Unit Concept**: Similar to controlNet, the program introduces the concept of a face unit. You can configure up to 10 units (3 units are the default setting) in the program settings (sd).

@ -9,6 +9,7 @@ from io import BytesIO
from typing import List, Tuple, Optional from typing import List, Tuple, Optional
import numpy as np import numpy as np
import requests import requests
import safetensors
class InpaintingWhen(Enum): class InpaintingWhen(Enum):
@ -18,6 +19,54 @@ class InpaintingWhen(Enum):
AFTER_ALL = "After All" AFTER_ALL = "After All"
class InpaintingOptions(BaseModel):
inpainting_denoising_strengh: float = Field(
description="Inpainting denoising strenght", default=0, lt=1, ge=0
)
inpainting_prompt: str = Field(
description="Inpainting denoising strenght",
examples=["Portrait of a [gender]"],
default="Portrait of a [gender]",
)
inpainting_negative_prompt: str = Field(
description="Inpainting denoising strenght",
examples=[
"Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation"
],
default="",
)
inpainting_steps: int = Field(
description="Inpainting steps",
examples=["Portrait of a [gender]"],
ge=1,
le=150,
default=20,
)
inpainting_sampler: str = Field(
description="Inpainting sampler", examples=["Euler"], default="Euler"
)
inpainting_model: str = Field(
description="Inpainting model", examples=["Current"], default="Current"
)
class InswappperOptions(BaseModel):
face_restorer_name: str = Field(
description="face restorer name", default="CodeFormer"
)
restorer_visibility: float = Field(
description="face restorer visibility", default=1, le=1, ge=0
)
codeformer_weight: float = Field(
description="face restorer codeformer weight", default=1, le=1, ge=0
)
upscaler_name: str = Field(description="upscaler name", default=None)
improved_mask: bool = Field(description="Use Improved Mask", default=False)
color_corrections: bool = Field(description="Use Color Correction", default=False)
sharpen: bool = Field(description="Sharpen Image", default=False)
erosion_factor: float = Field(description="Erosion Factor", default=1, le=10, ge=0)
class FaceSwapUnit(BaseModel): class FaceSwapUnit(BaseModel):
# The image given in reference # The image given in reference
source_img: str = Field( source_img: str = Field(
@ -82,6 +131,21 @@ class FaceSwapUnit(BaseModel):
default=0, default=0,
) )
pre_inpainting: Optional[InpaintingOptions] = Field(
description="Inpainting options",
default=None,
)
swapping_options: Optional[InswappperOptions] = Field(
description="PostProcessing & Mask options",
default=None,
)
post_inpainting: Optional[InpaintingOptions] = Field(
description="Inpainting options",
default=None,
)
def get_batch_images(self) -> List[Image.Image]: def get_batch_images(self) -> List[Image.Image]:
images = [] images = []
if self.batch_images: if self.batch_images:
@ -104,39 +168,15 @@ class PostProcessingOptions(BaseModel):
upscaler_visibility: float = Field( upscaler_visibility: float = Field(
description="upscaler visibility", default=1, le=1, ge=0 description="upscaler visibility", default=1, le=1, ge=0
) )
inpainting_denoising_strengh: float = Field(
description="Inpainting denoising strenght", default=0, lt=1, ge=0
)
inpainting_prompt: str = Field(
description="Inpainting denoising strenght",
examples=["Portrait of a [gender]"],
default="Portrait of a [gender]",
)
inpainting_negative_prompt: str = Field(
description="Inpainting denoising strenght",
examples=[
"Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation"
],
default="",
)
inpainting_steps: int = Field(
description="Inpainting steps",
examples=["Portrait of a [gender]"],
ge=1,
le=150,
default=20,
)
inpainting_sampler: str = Field(
description="Inpainting sampler", examples=["Euler"], default="Euler"
)
inpainting_when: InpaintingWhen = Field( inpainting_when: InpaintingWhen = Field(
description="When inpainting happens", description="When inpainting happens",
examples=[e.value for e in InpaintingWhen.__members__.values()], examples=[e.value for e in InpaintingWhen.__members__.values()],
default=InpaintingWhen.NEVER, default=InpaintingWhen.NEVER,
) )
inpainting_model: str = Field(
description="Inpainting model", examples=["Current"], default="Current" inpainting_options: Optional[InpaintingOptions] = Field(
description="Inpainting options",
default=None,
) )
@ -147,7 +187,7 @@ class FaceSwapRequest(BaseModel):
default=None, default=None,
) )
units: List[FaceSwapUnit] units: List[FaceSwapUnit]
postprocessing: Optional[PostProcessingOptions] postprocessing: Optional[PostProcessingOptions] = None
class FaceSwapResponse(BaseModel): class FaceSwapResponse(BaseModel):
@ -227,3 +267,26 @@ def compare_faces(
) )
return float(result.text) return float(result.text)
def safetensors_to_base64(file_path: str) -> str:
with open(file_path, "rb") as file:
file_bytes = file.read()
return "data:application/face;base64," + base64.b64encode(file_bytes).decode(
"utf-8"
)
def base64_to_safetensors(base64str: str, output_path: str) -> None:
try:
base64_data = base64str.split("base64,")[-1]
file_bytes = base64.b64decode(base64_data)
with open(output_path, "wb") as file:
file.write(file_bytes)
with safetensors.safe_open(output_path, framework="pt") as f:
print(output_path, "keys =", f.keys())
except Exception as e:
print("Error : failed to convert base64 string to safetensor", e)
import traceback
traceback.print_exc()

@ -1,18 +1,25 @@
from typing import List
import requests import requests
from api_utils import ( from api_utils import (
FaceSwapRequest,
FaceSwapUnit, FaceSwapUnit,
PostProcessingOptions, InswappperOptions,
FaceSwapResponse, base64_to_safetensors,
pil_to_base64, pil_to_base64,
PostProcessingOptions,
InpaintingWhen, InpaintingWhen,
FaceSwapCompareRequest, InpaintingOptions,
FaceSwapRequest,
FaceSwapResponse,
FaceSwapExtractRequest, FaceSwapExtractRequest,
FaceSwapCompareRequest,
FaceSwapExtractResponse, FaceSwapExtractResponse,
safetensors_to_base64,
) )
address = "http://127.0.0.1:7860" address = "http://127.0.0.1:7860"
# This has been tested on Linux platforms. This might requires some minor adaptations for windows.
############################# #############################
# FaceSwap # FaceSwap
@ -37,9 +44,11 @@ pp = PostProcessingOptions(
restorer_visibility=1, restorer_visibility=1,
upscaler_name="Lanczos", upscaler_name="Lanczos",
scale=4, scale=4,
inpainting_steps=30,
inpainting_denoising_strengh=0.1,
inpainting_when=InpaintingWhen.BEFORE_RESTORE_FACE, inpainting_when=InpaintingWhen.BEFORE_RESTORE_FACE,
inpainting_options=InpaintingOptions(
inpainting_steps=30,
inpainting_denoising_strengh=0.1,
),
) )
# Prepare the request # Prepare the request
@ -91,3 +100,52 @@ response = FaceSwapExtractResponse.parse_obj(result.json())
for img in response.pil_images: for img in response.pil_images:
img.show() img.show()
#############################
# Build checkpoint
source_images: List[str] = [
pil_to_base64("../references/man.png"),
pil_to_base64("../references/woman.png"),
]
result = requests.post(
url=f"{address}/faceswaplab/build",
json=source_images,
headers={"Content-Type": "application/json; charset=utf-8"},
)
base64_to_safetensors(result.json(), output_path="test.safetensors")
#############################
# FaceSwap with local safetensors
# First face unit :
unit1 = FaceSwapUnit(
source_face=safetensors_to_base64(
"test.safetensors"
), # convert the checkpoint to base64
faces_index=(0,), # Replace first face
swapping_options=InswappperOptions(
face_restorer_name="CodeFormer",
upscaler_name="LDSR",
improved_mask=True,
sharpen=True,
color_corrections=True,
),
)
# Prepare the request
request = FaceSwapRequest(image=pil_to_base64("test_image.png"), units=[unit1])
# Face Swap
result = requests.post(
url=f"{address}/faceswaplab/swap_face",
data=request.json(),
headers={"Content-Type": "application/json; charset=utf-8"},
)
response = FaceSwapResponse.parse_obj(result.json())
for img in response.pil_images:
img.show()

@ -0,0 +1,5 @@
numpy==1.25.1
Pillow==10.0.0
pydantic==1.10.9
Requests==2.31.0
safetensors==0.3.1

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 273 KiB

@ -25,6 +25,8 @@ Here are the main options for configuring a unit:
**You must always have at least one reference face OR a checkpoint. If both are selected, the checkpoint will be used and the reference ignored.** **You must always have at least one reference face OR a checkpoint. If both are selected, the checkpoint will be used and the reference ignored.**
#### Similarity
Always check for errors in the SD console. In particular, the absence of a reference face or a checkpoint can trigger errors. Always check for errors in the SD console. In particular, the absence of a reference face or a checkpoint can trigger errors.
+ **Comparison of faces** with the obtained swapped face: The swapped face can be compared to the original face using a distance function. The higher this value (from 1 to 0), the more similar the faces are. This calculation is performed if you activate **"Compute Similarity"** or **"Check Similarity"**. If you check the latter, you will have the opportunity to filter the output images with: + **Comparison of faces** with the obtained swapped face: The swapped face can be compared to the original face using a distance function. The higher this value (from 1 to 0), the more similar the faces are. This calculation is performed if you activate **"Compute Similarity"** or **"Check Similarity"**. If you check the latter, you will have the opportunity to filter the output images with:
@ -35,7 +37,43 @@ Always check for errors in the SD console. In particular, the absence of a refer
+ **Same gender:** the gender of the source face will be determined and only faces of the same gender will be considered. + **Same gender:** the gender of the source face will be determined and only faces of the same gender will be considered.
+ **Sort by size:** faces will be sorted from largest to smallest. + **Sort by size:** faces will be sorted from largest to smallest.
#### Post-processing #### Pre-Inpainting :
This part is applied BEFORE face swapping and only on matching faces.
The inpainting part works in the same way as adetailer. It sends each face to img2img for transformation. This is useful for transforming the face before swapping. For example, using a Lora model before swapping.
You can use a specific model for the replacement, different from the model used for the generation.
For inpainting to be active, denoising must be greater than 0 and the Inpainting When option must be set to:
#### Post-Processing & Advanced Masks Options : (upscaled inswapper)
By default, these settings are disabled, but you can use the global settings to modify the default behavior. These options are called "Default Upscaled swapper..."
The 'Upscaled Inswapper' is an option in SD FaceSwapLab which allows for upscaling of each face using an upscaller prior to its integration into the image. This is achieved by modifying a small segment of the InsightFace code.
The purpose of this feature is to enhance the quality of the face in the final image. While this process might slightly increase the processing time, it can deliver improved results. In certain cases, this could even eliminate the need for additional tools such as Codeformer or GFPGAN in postprocessing. See the processing order section to understand when and how it is used.
![](/assets/images/upscaled_settings.png)
The upscaled inswapper is disabled by default. It can be enabled in the sd options. Understanding the various steps helps explain why results may be unsatisfactory and how to address this issue.
+ **upscaler** : LDSR if None. The LDSR option generally gives the best results but at the expense of a lot of computational time. You should test other models to form an opinion. The 003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN model seems to give good results in a reasonable amount of time. It's not possible to disable upscaling, but it is possible to choose LANCZOS for speed if Codeformer is enabled in the upscaled inswapper. The result is generally satisfactory.
+ **restorer** : The face restorer to be used if necessary. Codeformer generally gives good results.
+ **sharpening** can provide more natural results, but it may also add artifacts. The same goes for **color correction**. By default, these options are set to False.
+ **improved mask:** The segmentation mask for the upscaled swapper is designed to avoid the square mask and prevent degradation of the non-face parts of the image. It is based on the Codeformer implementation. If "Use improved segmented mask (use pastenet to mask only the face)" and "upscaled inswapper" are checked in the settings, the mask will only cover the face, and will not be squared. However, depending on the image, this might introduce different types of problems such as artifacts on the border of the face.
+ **erosion factor:** it is possible to adjust the mask erosion parameters using the erosion settings. The higher this setting is, the more the mask is reduced.
#### Post-Inpainting :
This part is applied AFTER face swapping and only on matching faces.
This is useful for adding details to faces. The stronger the denoising, the more likely you are to lose the resemblance of the face. Some samplers (DPM variants for instance) seem to better preserve this resemblance than others.
## Global Post-processing
By default, these settings are disabled, but you can use the global settings to modify the default behavior. These options are called default "UI Default global post processing..."
The post-processing window looks very much like what you might find in the extra options, except for the inpainting part. The process takes place after all units have swapped faces. The post-processing window looks very much like what you might find in the extra options, except for the inpainting part. The process takes place after all units have swapped faces.
@ -82,21 +120,7 @@ The checkpoint can then be used in the main interface (use refresh button)
![](/assets/images/checkpoints_use.png) ![](/assets/images/checkpoints_use.png)
## Upscaled-inswapper
The 'Upscaled Inswapper' is an option in SD FaceSwapLab which allows for upscaling of each face using an upscaller prior to its integration into the image. This is achieved by modifying a small segment of the InsightFace code.
The purpose of this feature is to enhance the quality of the face in the final image. While this process might slightly increase the processing time, it can deliver improved results. In certain cases, this could even eliminate the need for additional tools such as Codeformer or GFPGAN in postprocessing. See the processing order section to understand when and how it is used.
![](/assets/images/upscaled_settings.png)
The upscaled inswapper is disabled by default. It can be enabled in the sd options. Understanding the various steps helps explain why results may be unsatisfactory and how to address this issue.
+ **upscaler** : LDSR if None. The LDSR option generally gives the best results but at the expense of a lot of computational time. You should test other models to form an opinion. The 003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN model seems to give good results in a reasonable amount of time. It's not possible to disable upscaling, but it is possible to choose LANCZOS for speed if Codeformer is enabled in the upscaled inswapper. The result is generally satisfactory.
+ **restorer** : The face restorer to be used if necessary. Codeformer generally gives good results.
+ **sharpening** can provide more natural results, but it may also add artifacts. The same goes for **color correction**. By default, these options are set to False.
+ **improved mask:** The segmentation mask for the upscaled swapper is designed to avoid the square mask and prevent degradation of the non-face parts of the image. It is based on the Codeformer implementation. If "Use improved segmented mask (use pastenet to mask only the face)" and "upscaled inswapper" are checked in the settings, the mask will only cover the face, and will not be squared. However, depending on the image, this might introduce different types of problems such as artifacts on the border of the face.
+ **fthresh and erosion factor:** it is possible to adjust the mask erosion parameters using the fthresh and erosion settings. The higher these settings are (particularly erosion), the more the mask is reduced.
## Processing order: ## Processing order:
@ -123,42 +147,20 @@ The extension is activated after all other extensions have been processed. Duri
![](/assets/images/step4.png) ![](/assets/images/step4.png)
## Settings
Here are the parameters that can be configured in sd settings and their default values ## API
### General Settings : A specific API is available. To understand how it works you can have a look at the example file in `client_utils`. You can also view the application's tests in the `tests` directory.
Name | Description | Default Value The API is documented in the FaceSwapLab tags in the http://localhost:7860/docs docs.
---|---|---
faceswaplab_model | Insightface model to use| models[0] if len(models) > 0 else "None"
faceswaplab_keep_original | keep original image before swapping. It true, will show original image | False
faceswaplab_units_count | How many faces units to use(requires restart) | 3
faceswaplab_detection_threshold | Detection threshold to use to detect face, if low will detect non human face as face | 0.5
### Default Settings : You don't have to use the api_utils.py file and pydantic types, but it can save time.
These parameters are used to configure the default settings displayed in post-processing.
Name | Description | Default Value ## Settings
faceswaplab_pp_default_face_restorer | UI Default post processing face restorer (requires restart) | None
faceswaplab_pp_default_face_restorer_visibility | UI Default post processing face restorer visibility (requires restart) | 1
faceswaplab_pp_default_face_restorer_weight | UI Default post processing face restorer weight (requires restart) | 1
faceswaplab_pp_default_upscaler | UI Default post processing upscaler (requires restart) | None
faceswaplab_pp_default_upscaler_visibility | UI Default post processing upscaler visibility(requires restart) | 1
### Upscaled inswapper Settings : You can change the program's default behavior in your webui's global settings (FaceSwapLab section in settings). This is particularly useful if you want to have default options for inpainting or for post-processsing, for example.
These parameters are used to control the upscaled inswapper, see above. The interface must be restarted to take the changes into account. Sometimes you have to reboot the entire webui server.
Name | Description | Default Value There may be display bugs on some radio buttons that may not display the value (Codeformer might look disabled for instance). Check the logs to ensure that the transformation has been applied.
faceswaplab_upscaled_swapper | Upscaled swapper. Applied only to the swapped faces. Apply transformations before merging with the original image | False
faceswaplab_upscaled_swapper_upscaler | Upscaled swapper upscaler (Recommended : LDSR but slow) | None
faceswaplab_upscaled_swapper_sharpen | Upscaled swapper sharpen | False
faceswaplab_upscaled_swapper_fixcolor | Upscaled swapper color correction | False
faceswaplab_upscaled_improved_mask | Use improved segmented mask (use pastenet to mask only the face) | True
faceswaplab_upscaled_swapper_face_restorer | Upscaled swapper face restorer | None
faceswaplab_upscaled_swapper_face_restorer_visibility | Upscaled swapper face restorer visibility | 1
faceswaplab_upscaled_swapper_face_restorer_weight | Upscaled swapper face restorer weight (codeformer) | 1
faceswaplab_upscaled_swapper_fthresh | Upscaled swapper fthresh (diff sensitivity) 10 = default behaviour. Low impact | 10
faceswaplab_upscaled_swapper_erosion | Upscaled swapper mask erosion factor, 1 = default behaviour. The larger it is, the more blur is applied around the face. Too large and the facial change is no longer visible | 1

@ -112,7 +112,7 @@ A face checkpoint is a saved embedding of a face, generated from multiple images
The primary advantage of face checkpoints is their size. An embedding is only around 2KB, meaning it's lightweight and can be reused later without requiring additional calculations. The primary advantage of face checkpoints is their size. An embedding is only around 2KB, meaning it's lightweight and can be reused later without requiring additional calculations.
Face checkpoints are saved as `.safetensors` files. Please be aware that exchanging `.safetensors` files carries potential security risks. These files, by default, are not secure and could potentially execute malicious code when opened. Therefore, extreme caution should be exercised when sharing or receiving this type of file. Face checkpoints are saved as `.safetensors` files.
#### How is similarity determined? #### How is similarity determined?
@ -133,3 +133,25 @@ The model generates faces with a resolution of 128x128, which is relatively low.
SimSwap models are based on older InsightFace architectures, and SimSwap has not been released as a Python package. Its incorporation would complicate the process, and it does not guarantee any substantial gain. SimSwap models are based on older InsightFace architectures, and SimSwap has not been released as a Python package. Its incorporation would complicate the process, and it does not guarantee any substantial gain.
If you manage to implement SimSwap successfully, feel free to submit a pull request. If you manage to implement SimSwap successfully, feel free to submit a pull request.
#### Shasum of inswapper model
Check that your model is correct and not corrupted :
```shell
$>sha1sum inswapper_128.onnx
17a64851eaefd55ea597ee41e5c18409754244c5 inswapper_128.onnx
$>sha256sum inswapper_128.onnx
e4a3f08c753cb72d04e10aa0f7dbe3deebbf39567d4ead6dce08e98aa49e16af inswapper_128.onnx
$>sha512sum inswapper_128.onnx
4311f4ccd9da58ec544e912b32ac0cba95f5ab4b1a06ac367efd3e157396efbae1097f624f10e77dd811fbba0917fa7c96e73de44563aa6099e5f46830965069 inswapper_128.onnx
```
#### Gradio errors (issubclass() arg 1 must be a class)
Older versions of gradio don't work well with the extension. See this bug report : https://github.com/glucauze/sd-webui-faceswaplab/issues/5
It has been tested on 3.32.0

@ -2,39 +2,9 @@ import launch
import os import os
import pkg_resources import pkg_resources
import sys import sys
from tqdm import tqdm
import urllib.request
req_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "requirements.txt")
models_dir = os.path.abspath("models/faceswaplab")
faces_dir = os.path.abspath(os.path.join("models", "faceswaplab", "faces"))
model_url = "https://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx"
model_name = os.path.basename(model_url)
model_path = os.path.join(models_dir, model_name)
def download(url: str, path: str) -> None:
request = urllib.request.urlopen(url)
total = int(request.headers.get("Content-Length", 0))
with tqdm(
total=total, desc="Downloading", unit="B", unit_scale=True, unit_divisor=1024
) as progress:
urllib.request.urlretrieve(
url,
path,
reporthook=lambda count, block_size, total_size: progress.update(
block_size
),
)
os.makedirs(models_dir, exist_ok=True)
os.makedirs(faces_dir, exist_ok=True)
if not os.path.exists(model_path):
download(model_url, model_path)
req_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "requirements.txt")
print("Checking faceswaplab requirements") print("Checking faceswaplab requirements")
with open(req_file) as file: with open(req_file) as file:

@ -1,9 +1,10 @@
cython cython
dill
ifnude ifnude
insightface==0.7.3 insightface==0.7.3
onnx==1.14.0 onnx==1.14.0
onnxruntime==1.15.0 onnxruntime==1.15.1
opencv-python==4.7.0.72 opencv-python
pandas pandas
pydantic==1.10.9 pydantic
dill==0.3.6 safetensors

@ -0,0 +1,79 @@
import os
from tqdm import tqdm
import urllib.request
from scripts.faceswaplab_utils.faceswaplab_logging import logger
from scripts.faceswaplab_swapping.swapper import is_sha1_matching
from scripts.faceswaplab_utils.models_utils import get_models
from scripts.faceswaplab_globals import *
from packaging import version
import pkg_resources
ALREADY_DONE = False
def check_configuration() -> None:
global ALREADY_DONE
if ALREADY_DONE:
return
logger.info(f"FaceSwapLab {VERSION_FLAG} Config :")
# This has been moved here due to pb with sdnext in install.py not doing what a1111 is doing.
models_dir = MODELS_DIR
faces_dir = FACES_DIR
model_url = "https://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx"
model_name = os.path.basename(model_url)
model_path = os.path.join(models_dir, model_name)
def download(url: str, path: str) -> None:
request = urllib.request.urlopen(url)
total = int(request.headers.get("Content-Length", 0))
with tqdm(
total=total,
desc="Downloading inswapper model",
unit="B",
unit_scale=True,
unit_divisor=1024,
) as progress:
urllib.request.urlretrieve(
url,
path,
reporthook=lambda count, block_size, total_size: progress.update(
block_size
),
)
os.makedirs(models_dir, exist_ok=True)
os.makedirs(faces_dir, exist_ok=True)
if not is_sha1_matching(model_path, EXPECTED_INSWAPPER_SHA1):
logger.error(
"Suspicious sha1 for model %s, check the model is valid or has been downloaded adequately. Should be %s",
model_path,
EXPECTED_INSWAPPER_SHA1,
)
gradio_version = pkg_resources.get_distribution("gradio").version
if version.parse(gradio_version) < version.parse("3.32.0"):
logger.warning(
"Errors may occur with gradio versions lower than 3.32.0. Your version : %s",
gradio_version,
)
if not os.path.exists(model_path):
download(model_url, model_path)
def print_infos() -> None:
logger.info("FaceSwapLab config :")
logger.info("+ MODEL DIR : %s", models_dir)
models = get_models()
logger.info("+ MODELS: %s", models)
logger.info("+ FACES DIR : %s", faces_dir)
logger.info("+ ANALYZER DIR : %s", ANALYZER_DIR)
print_infos()
ALREADY_DONE = True

@ -1,16 +1,17 @@
import importlib import importlib
from scripts.faceswaplab_api import faceswaplab_api import traceback
from scripts.faceswaplab_settings import faceswaplab_settings
from scripts.faceswaplab_ui import faceswaplab_tab, faceswaplab_unit_ui
from scripts.faceswaplab_utils.models_utils import (
get_current_model,
)
from scripts import faceswaplab_globals from scripts import faceswaplab_globals
from scripts.faceswaplab_swapping import swapper from scripts.configure import check_configuration
from scripts.faceswaplab_utils import faceswaplab_logging, imgutils from scripts.faceswaplab_api import faceswaplab_api
from scripts.faceswaplab_utils import models_utils
from scripts.faceswaplab_postprocessing import upscaling from scripts.faceswaplab_postprocessing import upscaling
from scripts.faceswaplab_settings import faceswaplab_settings
from scripts.faceswaplab_swapping import swapper
from scripts.faceswaplab_ui import faceswaplab_tab, faceswaplab_unit_ui
from scripts.faceswaplab_utils import faceswaplab_logging, imgutils, models_utils
from scripts.faceswaplab_utils.models_utils import get_current_model
from scripts.faceswaplab_utils.typing import *
from scripts.faceswaplab_utils.ui_utils import dataclasses_from_flat_list
# Reload all the modules when using "apply and restart" # Reload all the modules when using "apply and restart"
# This is mainly done for development purposes # This is mainly done for development purposes
@ -25,14 +26,12 @@ importlib.reload(faceswaplab_unit_ui)
importlib.reload(faceswaplab_api) importlib.reload(faceswaplab_api)
import os import os
from dataclasses import fields
from pprint import pformat from pprint import pformat
from typing import Any, List, Optional, Tuple from typing import Any, List, Optional, Tuple
import gradio as gr import gradio as gr
import modules.scripts as scripts import modules.scripts as scripts
from modules import script_callbacks, scripts from modules import script_callbacks, scripts, shared
from modules import scripts, shared
from modules.images import save_image from modules.images import save_image
from modules.processing import ( from modules.processing import (
Processed, Processed,
@ -40,16 +39,14 @@ from modules.processing import (
StableDiffusionProcessingImg2Img, StableDiffusionProcessingImg2Img,
) )
from modules.shared import opts from modules.shared import opts
from PIL import Image
from scripts.faceswaplab_utils.faceswaplab_logging import logger, save_img_debug
from scripts.faceswaplab_globals import VERSION_FLAG from scripts.faceswaplab_globals import VERSION_FLAG
from scripts.faceswaplab_postprocessing.postprocessing import enhance_image
from scripts.faceswaplab_postprocessing.postprocessing_options import ( from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
) )
from scripts.faceswaplab_postprocessing.postprocessing import enhance_image
from scripts.faceswaplab_ui.faceswaplab_unit_settings import FaceSwapUnitSettings from scripts.faceswaplab_ui.faceswaplab_unit_settings import FaceSwapUnitSettings
from scripts.faceswaplab_utils.faceswaplab_logging import logger, save_img_debug
EXTENSION_PATH = os.path.join("extensions", "sd-webui-faceswaplab") EXTENSION_PATH = os.path.join("extensions", "sd-webui-faceswaplab")
@ -62,26 +59,20 @@ try:
script_callbacks.on_app_started(faceswaplab_api.faceswaplab_api) script_callbacks.on_app_started(faceswaplab_api.faceswaplab_api)
except: except:
pass logger.error("Failed to register API")
traceback.print_exc()
class FaceSwapScript(scripts.Script): class FaceSwapScript(scripts.Script):
def __init__(self) -> None: def __init__(self) -> None:
logger.info(f"FaceSwapLab {VERSION_FLAG}")
super().__init__() super().__init__()
check_configuration()
@property @property
def units_count(self) -> int: def units_count(self) -> int:
return opts.data.get("faceswaplab_units_count", 3) return opts.data.get("faceswaplab_units_count", 3)
@property
def upscaled_swapper_in_generated(self) -> bool:
return opts.data.get("faceswaplab_upscaled_swapper", False)
@property
def upscaled_swapper_in_source(self) -> bool:
return opts.data.get("faceswaplab_upscaled_swapper_in_source", False)
@property @property
def enabled(self) -> bool: def enabled(self) -> bool:
"""Return True if any unit is enabled and the state is not interupted""" """Return True if any unit is enabled and the state is not interupted"""
@ -107,44 +98,39 @@ class FaceSwapScript(scripts.Script):
def ui(self, is_img2img: bool) -> List[gr.components.Component]: def ui(self, is_img2img: bool) -> List[gr.components.Component]:
with gr.Accordion(f"FaceSwapLab {VERSION_FLAG}", open=False): with gr.Accordion(f"FaceSwapLab {VERSION_FLAG}", open=False):
components = [] components: List[gr.components.Component] = []
for i in range(1, self.units_count + 1): for i in range(1, self.units_count + 1):
components += faceswaplab_unit_ui.faceswap_unit_ui(is_img2img, i) components += faceswaplab_unit_ui.faceswap_unit_ui(is_img2img, i)
upscaler = faceswaplab_tab.postprocessing_ui() post_processing = faceswaplab_tab.postprocessing_ui()
# If the order is modified, the before_process should be changed accordingly. # If the order is modified, the before_process should be changed accordingly.
return components + upscaler return components + post_processing
def read_config( def read_config(
self, p: StableDiffusionProcessing, *components: List[gr.components.Component] self, p: StableDiffusionProcessing, *components: Tuple[Any, ...]
) -> None: ) -> None:
for i, c in enumerate(components):
logger.debug("%s>%s", i, pformat(c))
# The order of processing for the components is important # The order of processing for the components is important
# The method first process faceswap units then postprocessing units # The method first process faceswap units then postprocessing units
classes: List[Any] = dataclasses_from_flat_list(
# self.make_first_script(p) [FaceSwapUnitSettings] * self.units_count + [PostProcessingOptions],
components,
)
self.units: List[FaceSwapUnitSettings] = [] self.units: List[FaceSwapUnitSettings] = []
self.units += [u for u in classes if isinstance(u, FaceSwapUnitSettings)]
# Parse and convert units flat components into FaceSwapUnitSettings self.postprocess_options = classes[-1]
for i in range(0, self.units_count):
self.units += [FaceSwapUnitSettings.get_unit_configuration(i, components)]
for i, u in enumerate(self.units): for i, u in enumerate(self.units):
logger.debug("%s, %s", pformat(i), pformat(u)) logger.debug("%s, %s", pformat(i), pformat(u))
# Parse the postprocessing options
# We must first find where to start from (after face swapping units)
len_conf: int = len(fields(FaceSwapUnitSettings))
shift: int = self.units_count * len_conf
self.postprocess_options = PostProcessingOptions(
*components[shift : shift + len(fields(PostProcessingOptions))] # type: ignore
)
logger.debug("%s", pformat(self.postprocess_options)) logger.debug("%s", pformat(self.postprocess_options))
if self.enabled: if self.enabled:
p.do_not_save_samples = not self.keep_original_images p.do_not_save_samples = not self.keep_original_images
def process( def process(
self, p: StableDiffusionProcessing, *components: List[gr.components.Component] self, p: StableDiffusionProcessing, *components: Tuple[Any, ...]
) -> None: ) -> None:
try: try:
self.read_config(p, *components) self.read_config(p, *components)
@ -152,14 +138,13 @@ class FaceSwapScript(scripts.Script):
# If is instance of img2img, we check if face swapping in source is required. # If is instance of img2img, we check if face swapping in source is required.
if isinstance(p, StableDiffusionProcessingImg2Img): if isinstance(p, StableDiffusionProcessingImg2Img):
if self.enabled and len(self.swap_in_source_units) > 0: if self.enabled and len(self.swap_in_source_units) > 0:
init_images: List[Tuple[Optional[Image.Image], Optional[str]]] = [ init_images: List[Tuple[Optional[PILImage], Optional[str]]] = [
(img, None) for img in p.init_images (img, None) for img in p.init_images
] ]
new_inits = swapper.process_images_units( new_inits = swapper.process_images_units(
get_current_model(), get_current_model(),
self.swap_in_source_units, self.swap_in_source_units,
images=init_images, images=init_images,
upscaled_swapper=self.upscaled_swapper_in_source,
force_blend=True, force_blend=True,
) )
logger.info(f"processed init images: {len(init_images)}") logger.info(f"processed init images: {len(init_images)}")
@ -167,6 +152,7 @@ class FaceSwapScript(scripts.Script):
p.init_images = [img[0] for img in new_inits] p.init_images = [img[0] for img in new_inits]
except Exception as e: except Exception as e:
logger.info("Failed to process : %s", e) logger.info("Failed to process : %s", e)
traceback.print_exc()
def postprocess( def postprocess(
self, p: StableDiffusionProcessing, processed: Processed, *args: List[Any] self, p: StableDiffusionProcessing, processed: Processed, *args: List[Any]
@ -174,7 +160,7 @@ class FaceSwapScript(scripts.Script):
try: try:
if self.enabled: if self.enabled:
# Get the original images without the grid # Get the original images without the grid
orig_images: List[Image.Image] = processed.images[ orig_images: List[PILImage] = processed.images[
processed.index_of_first_image : processed.index_of_first_image :
] ]
orig_infotexts: List[str] = processed.infotexts[ orig_infotexts: List[str] = processed.infotexts[
@ -193,7 +179,6 @@ class FaceSwapScript(scripts.Script):
get_current_model(), get_current_model(),
self.swap_in_generated_units, self.swap_in_generated_units,
images=[(img, info)], images=[(img, info)],
upscaled_swapper=self.upscaled_swapper_in_generated,
) )
if swapped_images is None: if swapped_images is None:
continue continue
@ -237,7 +222,6 @@ class FaceSwapScript(scripts.Script):
# Generate grid : # Generate grid :
if opts.return_grid and len(images) > 1: if opts.return_grid and len(images) > 1:
# FIXME :Use sd method, not that if blended is not active, the result will be a bit messy.
grid = imgutils.create_square_image(images) grid = imgutils.create_square_image(images)
text = processed.infotexts[0] text = processed.infotexts[0]
infotexts.insert(0, text) infotexts.insert(0, text)
@ -245,6 +229,20 @@ class FaceSwapScript(scripts.Script):
grid.info["parameters"] = text grid.info["parameters"] = text
images.insert(0, grid) images.insert(0, grid)
if opts.grid_save:
save_image(
grid,
p.outpath_grids,
"swapped-grid",
p.all_seeds[0],
p.all_prompts[0],
opts.grid_format,
info=text,
short_filename=not opts.grid_extended_filename,
p=p,
grid=True,
)
if keep_original: if keep_original:
# If we want to keep original images, we add all existing (including grid this time) # If we want to keep original images, we add all existing (including grid this time)
images += processed.images images += processed.images
@ -254,3 +252,4 @@ class FaceSwapScript(scripts.Script):
processed.infotexts = infotexts processed.infotexts = infotexts
except Exception as e: except Exception as e:
logger.error("Failed to swap face in postprocess method : %s", e) logger.error("Failed to swap face in postprocess method : %s", e)
traceback.print_exc()

@ -1,3 +1,4 @@
import tempfile
from PIL import Image from PIL import Image
import numpy as np import numpy as np
from fastapi import FastAPI from fastapi import FastAPI
@ -17,7 +18,9 @@ from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
) )
from client_api import api_utils from client_api import api_utils
from scripts.faceswaplab_postprocessing.postprocessing_options import InpaintingWhen from scripts.faceswaplab_utils.face_checkpoints_utils import (
build_face_checkpoint_and_save,
)
def encode_to_base64(image: Union[str, Image.Image, np.ndarray]) -> str: # type: ignore def encode_to_base64(image: Union[str, Image.Image, np.ndarray]) -> str: # type: ignore
@ -58,58 +61,12 @@ def encode_np_to_base64(image: np.ndarray) -> str: # type: ignore
return api.encode_pil_to_base64(pil) return api.encode_pil_to_base64(pil)
def get_postprocessing_options(
options: api_utils.PostProcessingOptions,
) -> PostProcessingOptions:
pp_options = PostProcessingOptions(
face_restorer_name=options.face_restorer_name,
restorer_visibility=options.restorer_visibility,
codeformer_weight=options.codeformer_weight,
upscaler_name=options.upscaler_name,
scale=options.scale,
upscale_visibility=options.upscaler_visibility,
inpainting_denoising_strengh=options.inpainting_denoising_strengh,
inpainting_prompt=options.inpainting_prompt,
inpainting_negative_prompt=options.inpainting_negative_prompt,
inpainting_steps=options.inpainting_steps,
inpainting_sampler=options.inpainting_sampler,
# hacky way to prevent having a separate file for Inpainting when (2 classes)
# therfore a conversion is required from api IW to server side IW
inpainting_when=InpaintingWhen(options.inpainting_when.value),
inpainting_model=options.inpainting_model,
)
assert isinstance(
pp_options.inpainting_when, InpaintingWhen
), "Value is not a valid InpaintingWhen enum"
return pp_options
def get_faceswap_units_settings( def get_faceswap_units_settings(
api_units: List[api_utils.FaceSwapUnit], api_units: List[api_utils.FaceSwapUnit],
) -> List[FaceSwapUnitSettings]: ) -> List[FaceSwapUnitSettings]:
units = [] units = []
for u in api_units: for u in api_units:
units.append( units.append(FaceSwapUnitSettings.from_api_dto(u))
FaceSwapUnitSettings(
source_img=base64_to_pil(u.source_img),
source_face=u.source_face,
_batch_files=u.get_batch_images(),
blend_faces=u.blend_faces,
enable=True,
same_gender=u.same_gender,
sort_by_size=u.sort_by_size,
check_similarity=u.check_similarity,
_compute_similarity=u.compute_similarity,
min_ref_sim=u.min_ref_sim,
min_sim=u.min_sim,
_faces_index=",".join([str(i) for i in (u.faces_index)]),
reference_face_index=u.reference_face_index,
swap_in_generated=True,
swap_in_source=False,
)
)
return units return units
@ -137,7 +94,9 @@ def faceswaplab_api(_: gr.Blocks, app: FastAPI) -> None:
if src_image is not None: if src_image is not None:
if request.postprocessing: if request.postprocessing:
pp_options = get_postprocessing_options(request.postprocessing) pp_options = PostProcessingOptions.from_api_dto(request.postprocessing)
else:
pp_options = None
units = get_faceswap_units_settings(request.units) units = get_faceswap_units_settings(request.units)
swapped_images = swapper.batch_process( swapped_images = swapper.batch_process(
@ -172,7 +131,7 @@ def faceswaplab_api(_: gr.Blocks, app: FastAPI) -> None:
) -> api_utils.FaceSwapExtractResponse: ) -> api_utils.FaceSwapExtractResponse:
pp_options = None pp_options = None
if request.postprocessing: if request.postprocessing:
pp_options = get_postprocessing_options(request.postprocessing) pp_options = PostProcessingOptions.from_api_dto(request.postprocessing)
images = [base64_to_pil(img) for img in request.images] images = [base64_to_pil(img) for img in request.images]
faces = swapper.extract_faces( faces = swapper.extract_faces(
images, extract_path=None, postprocess_options=pp_options images, extract_path=None, postprocess_options=pp_options
@ -180,3 +139,23 @@ def faceswaplab_api(_: gr.Blocks, app: FastAPI) -> None:
result_images = [encode_to_base64(img) for img in faces] result_images = [encode_to_base64(img) for img in faces]
response = api_utils.FaceSwapExtractResponse(images=result_images) response = api_utils.FaceSwapExtractResponse(images=result_images)
return response return response
@app.post(
"/faceswaplab/build",
tags=["faceswaplab"],
description="Build a face checkpoint using base64 images, return base64 satetensors",
)
async def build(base64_images: List[str]) -> Optional[str]:
if len(base64_images) > 0:
pil_images = [base64_to_pil(img) for img in base64_images]
with tempfile.NamedTemporaryFile(
delete=True, suffix=".safetensors"
) as temp_file:
build_face_checkpoint_and_save(
images=pil_images,
name="api_ckpt",
overwrite=True,
path=temp_file.name,
)
return api_utils.safetensors_to_base64(temp_file.name)
return None

@ -4,12 +4,15 @@ from modules import scripts
MODELS_DIR = os.path.abspath(os.path.join("models", "faceswaplab")) MODELS_DIR = os.path.abspath(os.path.join("models", "faceswaplab"))
ANALYZER_DIR = os.path.abspath(os.path.join(MODELS_DIR, "analysers")) ANALYZER_DIR = os.path.abspath(os.path.join(MODELS_DIR, "analysers"))
FACE_PARSER_DIR = os.path.abspath(os.path.join(MODELS_DIR, "parser")) FACE_PARSER_DIR = os.path.abspath(os.path.join(MODELS_DIR, "parser"))
FACES_DIR = os.path.abspath(os.path.join(MODELS_DIR, "faces"))
REFERENCE_PATH = os.path.join( REFERENCE_PATH = os.path.join(
scripts.basedir(), "extensions", "sd-webui-faceswaplab", "references" scripts.basedir(), "extensions", "sd-webui-faceswaplab", "references"
) )
VERSION_FLAG: str = "v1.1.2" VERSION_FLAG: str = "v1.2.0"
EXTENSION_PATH = os.path.join("extensions", "sd-webui-faceswaplab") EXTENSION_PATH = os.path.join("extensions", "sd-webui-faceswaplab")
# The NSFW score threshold. If any part of the image has a score greater than this threshold, the image will be considered NSFW. # The NSFW score threshold. If any part of the image has a score greater than this threshold, the image will be considered NSFW.
NSFW_SCORE_THRESHOLD: float = 0.7 NSFW_SCORE_THRESHOLD: float = 0.7
EXPECTED_INSWAPPER_SHA1 = "17a64851eaefd55ea597ee41e5c18409754244c5"

@ -0,0 +1,41 @@
from dataclasses import dataclass
from typing import List
import gradio as gr
from client_api import api_utils
@dataclass
class InpaintingOptions:
inpainting_denoising_strengh: float = 0
inpainting_prompt: str = ""
inpainting_negative_prompt: str = ""
inpainting_steps: int = 20
inpainting_sampler: str = "Euler"
inpainting_model: str = "Current"
@staticmethod
def from_gradio(components: List[gr.components.Component]) -> "InpaintingOptions":
return InpaintingOptions(*components)
@staticmethod
def from_api_dto(dto: api_utils.InpaintingOptions) -> "InpaintingOptions":
"""
Converts a InpaintingOptions object from an API DTO (Data Transfer Object).
:param options: An object of api_utils.InpaintingOptions representing the
post-processing options as received from the API.
:return: A InpaintingOptions instance containing the translated values
from the API DTO.
"""
if dto is None:
# Return default values
return InpaintingOptions()
return InpaintingOptions(
inpainting_denoising_strengh=dto.inpainting_denoising_strengh,
inpainting_prompt=dto.inpainting_prompt,
inpainting_negative_prompt=dto.inpainting_negative_prompt,
inpainting_steps=dto.inpainting_steps,
inpainting_sampler=dto.inpainting_sampler,
inpainting_model=dto.inpainting_model,
)

@ -1,53 +1,60 @@
from scripts.faceswaplab_inpainting.faceswaplab_inpainting import InpaintingOptions
from scripts.faceswaplab_utils.faceswaplab_logging import logger from scripts.faceswaplab_utils.faceswaplab_logging import logger
from PIL import Image from PIL import Image
from modules import shared from modules import shared
from scripts.faceswaplab_utils import imgutils from scripts.faceswaplab_utils import imgutils
from modules import shared, processing from modules import shared, processing
from modules.processing import StableDiffusionProcessingImg2Img from modules.processing import StableDiffusionProcessingImg2Img
from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions,
)
from modules import sd_models from modules import sd_models
import traceback
from scripts.faceswaplab_swapping import swapper from scripts.faceswaplab_swapping import swapper
from scripts.faceswaplab_utils.typing import *
from typing import *
def img2img_diffusion(img: Image.Image, pp: PostProcessingOptions) -> Image.Image: def img2img_diffusion(
if pp.inpainting_denoising_strengh == 0: img: PILImage, options: InpaintingOptions, faces: Optional[List[Face]] = None
logger.info("Discard inpainting denoising strength is 0") ) -> Image.Image:
if not options or options.inpainting_denoising_strengh == 0:
logger.info("Discard inpainting denoising strength is 0 or no inpainting")
return img return img
try: try:
logger.info( logger.info(
f"""Inpainting face f"""Inpainting face
Sampler : {pp.inpainting_sampler} Sampler : {options.inpainting_sampler}
inpainting_denoising_strength : {pp.inpainting_denoising_strengh} inpainting_denoising_strength : {options.inpainting_denoising_strengh}
inpainting_steps : {pp.inpainting_steps} inpainting_steps : {options.inpainting_steps}
""" """
) )
if not isinstance(pp.inpainting_sampler, str): if not isinstance(options.inpainting_sampler, str):
pp.inpainting_sampler = "Euler" options.inpainting_sampler = "Euler"
logger.info("send faces to image to image") logger.info("send faces to image to image")
img = img.copy() img = img.copy()
faces = swapper.get_faces(imgutils.pil_to_cv2(img))
if not faces:
faces = swapper.get_faces(imgutils.pil_to_cv2(img))
if faces: if faces:
for face in faces: for face in faces:
bbox = face.bbox.astype(int) bbox = face.bbox.astype(int)
mask = imgutils.create_mask(img, bbox) mask = imgutils.create_mask(img, bbox)
prompt = pp.inpainting_prompt.replace( prompt = options.inpainting_prompt.replace(
"[gender]", "man" if face["gender"] == 1 else "woman" "[gender]", "man" if face["gender"] == 1 else "woman"
) )
negative_prompt = pp.inpainting_negative_prompt.replace( negative_prompt = options.inpainting_negative_prompt.replace(
"[gender]", "man" if face["gender"] == 1 else "woman" "[gender]", "man" if face["gender"] == 1 else "woman"
) )
logger.info("Denoising prompt : %s", prompt) logger.info("Denoising prompt : %s", prompt)
logger.info("Denoising strenght : %s", pp.inpainting_denoising_strengh) logger.info(
"Denoising strenght : %s", options.inpainting_denoising_strengh
)
i2i_kwargs = { i2i_kwargs = {
"sampler_name": pp.inpainting_sampler, "sampler_name": options.inpainting_sampler,
"do_not_save_samples": True, "do_not_save_samples": True,
"steps": pp.inpainting_steps, "steps": options.inpainting_steps,
"width": img.width, "width": img.width,
"inpainting_fill": 1, "inpainting_fill": 1,
"inpaint_full_res": True, "inpaint_full_res": True,
@ -55,17 +62,26 @@ inpainting_steps : {pp.inpainting_steps}
"mask": mask, "mask": mask,
"prompt": prompt, "prompt": prompt,
"negative_prompt": negative_prompt, "negative_prompt": negative_prompt,
"denoising_strength": pp.inpainting_denoising_strengh, "denoising_strength": options.inpainting_denoising_strengh,
"override_settings": {
"return_mask_composite": False,
"save_images_before_face_restoration": False,
"save_images_before_highres_fix": False,
"save_images_before_color_correction": False,
"save_mask": False,
"save_mask_composite": False,
"samples_save": False,
},
} }
current_model_checkpoint = shared.opts.sd_model_checkpoint current_model_checkpoint = shared.opts.sd_model_checkpoint
if pp.inpainting_model and pp.inpainting_model != "Current": if options.inpainting_model and options.inpainting_model != "Current":
# Change checkpoint # Change checkpoint
shared.opts.sd_model_checkpoint = pp.inpainting_model shared.opts.sd_model_checkpoint = options.inpainting_model
sd_models.select_checkpoint sd_models.select_checkpoint
sd_models.load_model() sd_models.load_model()
i2i_p = StableDiffusionProcessingImg2Img([img], **i2i_kwargs) i2i_p = StableDiffusionProcessingImg2Img([img], **i2i_kwargs)
i2i_processed = processing.process_images(i2i_p) i2i_processed = processing.process_images(i2i_p)
if pp.inpainting_model and pp.inpainting_model != "Current": if options.inpainting_model and options.inpainting_model != "Current":
# Restore checkpoint # Restore checkpoint
shared.opts.sd_model_checkpoint = current_model_checkpoint shared.opts.sd_model_checkpoint = current_model_checkpoint
sd_models.select_checkpoint sd_models.select_checkpoint
@ -76,8 +92,6 @@ inpainting_steps : {pp.inpainting_steps}
img = images[0] img = images[0]
return img return img
except Exception as e: except Exception as e:
logger.error("Failed to apply img2img to face : %s", e) logger.error("Failed to apply inpainting to face : %s", e)
import traceback
traceback.print_exc() traceback.print_exc()
raise e raise e

@ -4,8 +4,9 @@ from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
InpaintingWhen, InpaintingWhen,
) )
from scripts.faceswaplab_postprocessing.i2i_pp import img2img_diffusion from scripts.faceswaplab_inpainting.i2i_pp import img2img_diffusion
from scripts.faceswaplab_postprocessing.upscaling import upscale_img, restore_face from scripts.faceswaplab_postprocessing.upscaling import upscale_img, restore_face
import traceback
def enhance_image(image: Image.Image, pp_options: PostProcessingOptions) -> Image.Image: def enhance_image(image: Image.Image, pp_options: PostProcessingOptions) -> Image.Image:
@ -19,7 +20,9 @@ def enhance_image(image: Image.Image, pp_options: PostProcessingOptions) -> Imag
or pp_options.inpainting_when == InpaintingWhen.BEFORE_UPSCALING or pp_options.inpainting_when == InpaintingWhen.BEFORE_UPSCALING
): ):
logger.debug("Inpaint before upscale") logger.debug("Inpaint before upscale")
result_image = img2img_diffusion(result_image, pp_options) result_image = img2img_diffusion(
img=result_image, options=pp_options.inpainting_options
)
result_image = upscale_img(result_image, pp_options) result_image = upscale_img(result_image, pp_options)
if ( if (
@ -27,7 +30,9 @@ def enhance_image(image: Image.Image, pp_options: PostProcessingOptions) -> Imag
or pp_options.inpainting_when == InpaintingWhen.BEFORE_RESTORE_FACE or pp_options.inpainting_when == InpaintingWhen.BEFORE_RESTORE_FACE
): ):
logger.debug("Inpaint before restore") logger.debug("Inpaint before restore")
result_image = img2img_diffusion(result_image, pp_options) result_image = img2img_diffusion(
result_image, pp_options.inpainting_options
)
result_image = restore_face(result_image, pp_options) result_image = restore_face(result_image, pp_options)
@ -36,9 +41,11 @@ def enhance_image(image: Image.Image, pp_options: PostProcessingOptions) -> Imag
or pp_options.inpainting_when == InpaintingWhen.AFTER_ALL or pp_options.inpainting_when == InpaintingWhen.AFTER_ALL
): ):
logger.debug("Inpaint after all") logger.debug("Inpaint after all")
result_image = img2img_diffusion(result_image, pp_options) result_image = img2img_diffusion(
result_image, pp_options.inpainting_options
)
except Exception as e: except Exception as e:
logger.error("Failed to upscale %s", e) logger.error("Failed to post-process %s", e)
traceback.print_exc()
return result_image return result_image

@ -3,6 +3,8 @@ from modules.upscaler import UpscalerData
from dataclasses import dataclass from dataclasses import dataclass
from modules import shared from modules import shared
from enum import Enum from enum import Enum
from scripts.faceswaplab_inpainting.faceswaplab_inpainting import InpaintingOptions
from client_api import api_utils
class InpaintingWhen(Enum): class InpaintingWhen(Enum):
@ -22,13 +24,10 @@ class PostProcessingOptions:
scale: float = 1 scale: float = 1
upscale_visibility: float = 0.5 upscale_visibility: float = 0.5
inpainting_denoising_strengh: float = 0
inpainting_prompt: str = ""
inpainting_negative_prompt: str = ""
inpainting_steps: int = 20
inpainting_sampler: str = "Euler"
inpainting_when: InpaintingWhen = InpaintingWhen.BEFORE_UPSCALING inpainting_when: InpaintingWhen = InpaintingWhen.BEFORE_UPSCALING
inpainting_model: str = "Current"
# (Don't use optional for this or gradio parsing will fail) :
inpainting_options: InpaintingOptions = None
@property @property
def upscaler(self) -> UpscalerData: def upscaler(self) -> UpscalerData:
@ -43,3 +42,28 @@ class PostProcessingOptions:
if face_restorer.name() == self.face_restorer_name: if face_restorer.name() == self.face_restorer_name:
return face_restorer return face_restorer
return None return None
@staticmethod
def from_api_dto(
options: api_utils.PostProcessingOptions,
) -> "PostProcessingOptions":
"""
Converts a PostProcessingOptions object from an API DTO (Data Transfer Object).
:param options: An object of api_utils.PostProcessingOptions representing the
post-processing options as received from the API.
:return: A PostProcessingOptions instance containing the translated values
from the API DTO.
"""
return PostProcessingOptions(
face_restorer_name=options.face_restorer_name,
restorer_visibility=options.restorer_visibility,
codeformer_weight=options.codeformer_weight,
upscaler_name=options.upscaler_name,
scale=options.scale,
upscale_visibility=options.upscaler_visibility,
inpainting_when=InpaintingWhen(options.inpainting_when.value),
inpainting_options=InpaintingOptions.from_api_dto(
options.inpainting_options
),
)

@ -5,11 +5,12 @@ from scripts.faceswaplab_utils.faceswaplab_logging import logger
from PIL import Image from PIL import Image
import numpy as np import numpy as np
from modules import codeformer_model from modules import codeformer_model
from scripts.faceswaplab_utils.typing import *
def upscale_img(image: Image.Image, pp_options: PostProcessingOptions) -> Image.Image: def upscale_img(image: PILImage, pp_options: PostProcessingOptions) -> PILImage:
if pp_options.upscaler is not None and pp_options.upscaler.name != "None": if pp_options.upscaler is not None and pp_options.upscaler.name != "None":
original_image = image.copy() original_image: PILImage = image.copy()
logger.info( logger.info(
"Upscale with %s scale = %s", "Upscale with %s scale = %s",
pp_options.upscaler.name, pp_options.upscaler.name,
@ -18,7 +19,12 @@ def upscale_img(image: Image.Image, pp_options: PostProcessingOptions) -> Image.
result_image = pp_options.upscaler.scaler.upscale( result_image = pp_options.upscaler.scaler.upscale(
image, pp_options.scale, pp_options.upscaler.data_path image, pp_options.scale, pp_options.upscaler.data_path
) )
if pp_options.scale == 1:
# FIXME : Could be better (managing images whose dimensions are not multiples of 16)
if pp_options.scale == 1 and original_image.size == result_image.size:
logger.debug(
"Sizes orig=%s, result=%s", original_image.size, result_image.size
)
result_image = Image.blend( result_image = Image.blend(
original_image, result_image, pp_options.upscale_visibility original_image, result_image, pp_options.upscale_visibility
) )

@ -54,7 +54,7 @@ def on_ui_settings() -> None:
"faceswaplab_pp_default_face_restorer", "faceswaplab_pp_default_face_restorer",
shared.OptionInfo( shared.OptionInfo(
None, None,
"UI Default post processing face restorer (requires restart)", "UI Default global post processing face restorer (requires restart)",
gr.Dropdown, gr.Dropdown,
{ {
"interactive": True, "interactive": True,
@ -67,7 +67,7 @@ def on_ui_settings() -> None:
"faceswaplab_pp_default_face_restorer_visibility", "faceswaplab_pp_default_face_restorer_visibility",
shared.OptionInfo( shared.OptionInfo(
1, 1,
"UI Default post processing face restorer visibility (requires restart)", "UI Default global post processing face restorer visibility (requires restart)",
gr.Slider, gr.Slider,
{"minimum": 0, "maximum": 1, "step": 0.001}, {"minimum": 0, "maximum": 1, "step": 0.001},
section=section, section=section,
@ -77,7 +77,7 @@ def on_ui_settings() -> None:
"faceswaplab_pp_default_face_restorer_weight", "faceswaplab_pp_default_face_restorer_weight",
shared.OptionInfo( shared.OptionInfo(
1, 1,
"UI Default post processing face restorer weight (requires restart)", "UI Default global post processing face restorer weight (requires restart)",
gr.Slider, gr.Slider,
{"minimum": 0, "maximum": 1, "step": 0.001}, {"minimum": 0, "maximum": 1, "step": 0.001},
section=section, section=section,
@ -87,7 +87,7 @@ def on_ui_settings() -> None:
"faceswaplab_pp_default_upscaler", "faceswaplab_pp_default_upscaler",
shared.OptionInfo( shared.OptionInfo(
None, None,
"UI Default post processing upscaler (requires restart)", "UI Default global post processing upscaler (requires restart)",
gr.Dropdown, gr.Dropdown,
{ {
"interactive": True, "interactive": True,
@ -100,13 +100,15 @@ def on_ui_settings() -> None:
"faceswaplab_pp_default_upscaler_visibility", "faceswaplab_pp_default_upscaler_visibility",
shared.OptionInfo( shared.OptionInfo(
1, 1,
"UI Default post processing upscaler visibility(requires restart)", "UI Default global post processing upscaler visibility(requires restart)",
gr.Slider, gr.Slider,
{"minimum": 0, "maximum": 1, "step": 0.001}, {"minimum": 0, "maximum": 1, "step": 0.001},
section=section, section=section,
), ),
) )
# Inpainting
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_pp_default_inpainting_prompt", "faceswaplab_pp_default_inpainting_prompt",
shared.OptionInfo( shared.OptionInfo(
@ -132,20 +134,10 @@ def on_ui_settings() -> None:
# UPSCALED SWAPPER # UPSCALED SWAPPER
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_swapper", "faceswaplab_default_upscaled_swapper_upscaler",
shared.OptionInfo(
False,
"Upscaled swapper. Applied only to the swapped faces. Apply transformations before merging with the original image.",
gr.Checkbox,
{"interactive": True},
section=section,
),
)
shared.opts.add_option(
"faceswaplab_upscaled_swapper_upscaler",
shared.OptionInfo( shared.OptionInfo(
None, None,
"Upscaled swapper upscaler (Recommanded : LDSR but slow)", "Default Upscaled swapper upscaler (Recommanded : LDSR but slow) (requires restart)",
gr.Dropdown, gr.Dropdown,
{ {
"interactive": True, "interactive": True,
@ -155,40 +147,40 @@ def on_ui_settings() -> None:
), ),
) )
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_swapper_sharpen", "faceswaplab_default_upscaled_swapper_sharpen",
shared.OptionInfo( shared.OptionInfo(
False, False,
"Upscaled swapper sharpen", "Default Upscaled swapper sharpen",
gr.Checkbox, gr.Checkbox,
{"interactive": True}, {"interactive": True},
section=section, section=section,
), ),
) )
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_swapper_fixcolor", "faceswaplab_default_upscaled_swapper_fixcolor",
shared.OptionInfo( shared.OptionInfo(
False, False,
"Upscaled swapper color correction", "Default Upscaled swapper color corrections (requires restart)",
gr.Checkbox, gr.Checkbox,
{"interactive": True}, {"interactive": True},
section=section, section=section,
), ),
) )
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_improved_mask", "faceswaplab_default_upscaled_swapper_improved_mask",
shared.OptionInfo( shared.OptionInfo(
True, True,
"Use improved segmented mask (use pastenet to mask only the face)", "Default Use improved segmented mask (use pastenet to mask only the face) (requires restart)",
gr.Checkbox, gr.Checkbox,
{"interactive": True}, {"interactive": True},
section=section, section=section,
), ),
) )
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_swapper_face_restorer", "faceswaplab_default_upscaled_swapper_face_restorer",
shared.OptionInfo( shared.OptionInfo(
None, None,
"Upscaled swapper face restorer", "Default Upscaled swapper face restorer (requires restart)",
gr.Dropdown, gr.Dropdown,
{ {
"interactive": True, "interactive": True,
@ -198,40 +190,30 @@ def on_ui_settings() -> None:
), ),
) )
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_swapper_face_restorer_visibility", "faceswaplab_default_upscaled_swapper_face_restorer_visibility",
shared.OptionInfo( shared.OptionInfo(
1, 1,
"Upscaled swapper face restorer visibility", "Default Upscaled swapper face restorer visibility (requires restart)",
gr.Slider, gr.Slider,
{"minimum": 0, "maximum": 1, "step": 0.001}, {"minimum": 0, "maximum": 1, "step": 0.001},
section=section, section=section,
), ),
) )
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_swapper_face_restorer_weight", "faceswaplab_default_upscaled_swapper_face_restorer_weight",
shared.OptionInfo( shared.OptionInfo(
1, 1,
"Upscaled swapper face restorer weight (codeformer)", "Default Upscaled swapper face restorer weight (codeformer) (requires restart)",
gr.Slider, gr.Slider,
{"minimum": 0, "maximum": 1, "step": 0.001}, {"minimum": 0, "maximum": 1, "step": 0.001},
section=section, section=section,
), ),
) )
shared.opts.add_option( shared.opts.add_option(
"faceswaplab_upscaled_swapper_fthresh", "faceswaplab_default_upscaled_swapper_erosion",
shared.OptionInfo(
10,
"Upscaled swapper fthresh (diff sensitivity) 10 = default behaviour. Low impact.",
gr.Slider,
{"minimum": 5, "maximum": 250, "step": 1},
section=section,
),
)
shared.opts.add_option(
"faceswaplab_upscaled_swapper_erosion",
shared.OptionInfo( shared.OptionInfo(
1, 1,
"Upscaled swapper mask erosion factor, 1 = default behaviour. The larger it is, the more blur is applied around the face. Too large and the facial change is no longer visible.", "Default Upscaled swapper mask erosion factor, 1 = default behaviour. The larger it is, the more blur is applied around the face. Too large and the facial change is no longer visible. (requires restart)",
gr.Slider, gr.Slider,
{"minimum": 0, "maximum": 10, "step": 0.001}, {"minimum": 0, "maximum": 10, "step": 0.001},
section=section, section=section,

@ -20,7 +20,7 @@ def get_parsing_model(device: torch_device) -> torch.nn.Module:
Returns: Returns:
The parsing model. The parsing model.
""" """
return init_parsing_model(device=device) return init_parsing_model(device=device) # type: ignore
def convert_image_to_tensor( def convert_image_to_tensor(

@ -50,7 +50,7 @@ from scripts.faceswaplab_globals import FACE_PARSER_DIR
ROOT_DIR = FACE_PARSER_DIR ROOT_DIR = FACE_PARSER_DIR
def load_file_from_url(url, model_dir=None, progress=True, file_name=None): def load_file_from_url(url: str, model_dir=None, progress=True, file_name=None):
"""Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py""" """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py"""
if model_dir is None: if model_dir is None:
hub_dir = get_dir() hub_dir = get_dir()

@ -1,18 +1,26 @@
import copy import copy
import os import os
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Dict, List, Set, Tuple, Optional from pprint import pformat
import traceback
from typing import Any, Dict, Generator, List, Set, Tuple, Optional
import tempfile import tempfile
from tqdm import tqdm
import sys
from io import StringIO
from contextlib import contextmanager
import hashlib
import cv2 import cv2
import insightface import insightface
import numpy as np import numpy as np
from insightface.app.common import Face from insightface.app.common import Face as ISFace
from PIL import Image from PIL import Image
from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_similarity
from scripts.faceswaplab_swapping import upscaled_inswapper from scripts.faceswaplab_swapping import upscaled_inswapper
from scripts.faceswaplab_swapping.upcaled_inswapper_options import InswappperOptions
from scripts.faceswaplab_utils.imgutils import ( from scripts.faceswaplab_utils.imgutils import (
pil_to_cv2, pil_to_cv2,
check_against_nsfw, check_against_nsfw,
@ -27,8 +35,8 @@ from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
) )
from scripts.faceswaplab_utils.models_utils import get_current_model from scripts.faceswaplab_utils.models_utils import get_current_model
import gradio as gr from scripts.faceswaplab_utils.typing import CV2ImgU8, PILImage, Face
from scripts.faceswaplab_inpainting.i2i_pp import img2img_diffusion
providers = ["CPUExecutionProvider"] providers = ["CPUExecutionProvider"]
@ -60,7 +68,7 @@ def cosine_similarity_face(face1: Face, face2: Face) -> float:
return max(0, similarity[0, 0]) return max(0, similarity[0, 0])
def compare_faces(img1: Image.Image, img2: Image.Image) -> float: def compare_faces(img1: PILImage, img2: PILImage) -> float:
""" """
Compares the similarity between two faces extracted from images using cosine similarity. Compares the similarity between two faces extracted from images using cosine similarity.
@ -87,22 +95,22 @@ def compare_faces(img1: Image.Image, img2: Image.Image) -> float:
def batch_process( def batch_process(
src_images: List[Image.Image], src_images: List[PILImage],
save_path: Optional[str], save_path: Optional[str],
units: List[FaceSwapUnitSettings], units: List[FaceSwapUnitSettings],
postprocess_options: PostProcessingOptions, postprocess_options: PostProcessingOptions,
) -> Optional[List[Image.Image]]: ) -> Optional[List[PILImage]]:
""" """
Process a batch of images, apply face swapping according to the given settings, and optionally save the resulting images to a specified path. Process a batch of images, apply face swapping according to the given settings, and optionally save the resulting images to a specified path.
Args: Args:
src_images (List[Image.Image]): List of source PIL Images to process. src_images (List[PILImage]): List of source PIL Images to process.
save_path (Optional[str]): Destination path where the processed images will be saved. If None, no images are saved. save_path (Optional[str]): Destination path where the processed images will be saved. If None, no images are saved.
units (List[FaceSwapUnitSettings]): List of FaceSwapUnitSettings to apply to the images. units (List[FaceSwapUnitSettings]): List of FaceSwapUnitSettings to apply to the images.
postprocess_options (PostProcessingOptions): Post-processing settings to be applied to the images. postprocess_options (PostProcessingOptions): Post-processing settings to be applied to the images.
Returns: Returns:
Optional[List[Image.Image]]: List of processed images, or None in case of an exception. Optional[List[PILImage]]: List of processed images, or None in case of an exception.
Raises: Raises:
Any exceptions raised by the underlying process will be logged and the function will return None. Any exceptions raised by the underlying process will be logged and the function will return None.
@ -117,19 +125,16 @@ def batch_process(
for src_image in src_images: for src_image in src_images:
current_images = [] current_images = []
swapped_images = process_images_units( swapped_images = process_images_units(
get_current_model(), get_current_model(), images=[(src_image, None)], units=units
images=[(src_image, None)],
units=units,
upscaled_swapper=opts.data.get(
"faceswaplab_upscaled_swapper", False
),
) )
if len(swapped_images) > 0: if len(swapped_images) > 0:
current_images += [img for img, _ in swapped_images] current_images += [img for img, _ in swapped_images]
logger.info("%s images generated", len(current_images)) logger.info("%s images generated", len(current_images))
for i, img in enumerate(current_images):
current_images[i] = enhance_image(img, postprocess_options) if postprocess_options:
for i, img in enumerate(current_images):
current_images[i] = enhance_image(img, postprocess_options)
if save_path: if save_path:
for img in current_images: for img in current_images:
@ -149,7 +154,7 @@ def batch_process(
def extract_faces( def extract_faces(
images: List[Image.Image], images: List[PILImage],
extract_path: Optional[str], extract_path: Optional[str],
postprocess_options: PostProcessingOptions, postprocess_options: PostProcessingOptions,
) -> Optional[List[str]]: ) -> Optional[List[str]]:
@ -206,7 +211,7 @@ def extract_faces(
return result_images return result_images
except Exception as e: except Exception as e:
logger.info("Failed to extract : %s", e) logger.error("Failed to extract : %s", e)
import traceback import traceback
traceback.print_exc() traceback.print_exc()
@ -225,6 +230,33 @@ class FaceModelException(Exception):
super().__init__(self.message) super().__init__(self.message)
@contextmanager
def capture_stdout() -> Generator[StringIO, None, None]:
"""
Capture and yield the printed messages to stdout.
This context manager temporarily replaces sys.stdout with a StringIO object,
capturing all printed output. After the context block is exited, sys.stdout
is restored to its original value.
Example usage:
with capture_stdout() as captured:
print("Hello, World!")
output = captured.getvalue()
# output now contains "Hello, World!\n"
Returns:
A StringIO object containing the captured output.
"""
original_stdout = sys.stdout # Type: ignore
captured_stdout = StringIO()
sys.stdout = captured_stdout # Type: ignore
try:
yield captured_stdout
finally:
sys.stdout = original_stdout # Type: ignore
@lru_cache(maxsize=1) @lru_cache(maxsize=1)
def getAnalysisModel() -> insightface.app.FaceAnalysis: def getAnalysisModel() -> insightface.app.FaceAnalysis:
""" """
@ -237,11 +269,22 @@ def getAnalysisModel() -> insightface.app.FaceAnalysis:
if not os.path.exists(faceswaplab_globals.ANALYZER_DIR): if not os.path.exists(faceswaplab_globals.ANALYZER_DIR):
os.makedirs(faceswaplab_globals.ANALYZER_DIR) os.makedirs(faceswaplab_globals.ANALYZER_DIR)
logger.info("Load analysis model, will take some time.") logger.info("Load analysis model, will take some time. (> 30s)")
# Initialize the analysis model with the specified name and providers # Initialize the analysis model with the specified name and providers
return insightface.app.FaceAnalysis(
name="buffalo_l", providers=providers, root=faceswaplab_globals.ANALYZER_DIR with tqdm(
) total=1, desc="Loading analysis model (first time is slow)", unit="model"
) as pbar:
with capture_stdout() as captured:
model = insightface.app.FaceAnalysis(
name="buffalo_l",
providers=providers,
root=faceswaplab_globals.ANALYZER_DIR,
)
pbar.update(1)
logger.info("%s", pformat(captured.getvalue()))
return model
except Exception as e: except Exception as e:
logger.error( logger.error(
"Loading of swapping model failed, please check the requirements (On Windows, download and install Visual Studio. During the install, make sure to include the Python and C++ packages.)" "Loading of swapping model failed, please check the requirements (On Windows, download and install Visual Studio. During the install, make sure to include the Python and C++ packages.)"
@ -249,6 +292,25 @@ def getAnalysisModel() -> insightface.app.FaceAnalysis:
raise FaceModelException("Loading of analysis model failed") raise FaceModelException("Loading of analysis model failed")
def is_sha1_matching(file_path: str, expected_sha1: str) -> bool:
sha1_hash = hashlib.sha1(usedforsecurity=False)
try:
with open(file_path, "rb") as file:
for byte_block in iter(lambda: file.read(4096), b""):
sha1_hash.update(byte_block)
if sha1_hash.hexdigest() == expected_sha1:
return True
else:
return False
except Exception as e:
logger.error(
"Failed to check model hash, check the model is valid or has been downloaded adequately : %e",
e,
)
traceback.print_exc()
return False
@lru_cache(maxsize=1) @lru_cache(maxsize=1)
def getFaceSwapModel(model_path: str) -> upscaled_inswapper.UpscaledINSwapper: def getFaceSwapModel(model_path: str) -> upscaled_inswapper.UpscaledINSwapper:
""" """
@ -261,28 +323,41 @@ def getFaceSwapModel(model_path: str) -> upscaled_inswapper.UpscaledINSwapper:
insightface.model_zoo.FaceModel: The face swap model. insightface.model_zoo.FaceModel: The face swap model.
""" """
try: try:
# Initializes the face swap model using the specified model path. expected_sha1 = "17a64851eaefd55ea597ee41e5c18409754244c5"
return upscaled_inswapper.UpscaledINSwapper( if not is_sha1_matching(model_path, expected_sha1):
insightface.model_zoo.get_model(model_path, providers=providers) logger.error(
) "Suspicious sha1 for model %s, check the model is valid or has been downloaded adequately. Should be %s",
model_path,
expected_sha1,
)
with tqdm(total=1, desc="Loading swap model", unit="model") as pbar:
with capture_stdout() as captured:
model = upscaled_inswapper.UpscaledINSwapper(
insightface.model_zoo.get_model(model_path, providers=providers)
)
pbar.update(1)
logger.info("%s", pformat(captured.getvalue()))
return model
except Exception as e: except Exception as e:
logger.error( logger.error(
"Loading of swapping model failed, please check the requirements (On Windows, download and install Visual Studio. During the install, make sure to include the Python and C++ packages.)" "Loading of swapping model failed, please check the requirements (On Windows, download and install Visual Studio. During the install, make sure to include the Python and C++ packages.)"
) )
traceback.print_exc()
raise FaceModelException("Loading of swapping model failed") raise FaceModelException("Loading of swapping model failed")
def get_faces( def get_faces(
img_data: np.ndarray, # type: ignore img_data: CV2ImgU8,
det_size: Tuple[int, int] = (640, 640), det_size: Tuple[int, int] = (640, 640),
det_thresh: Optional[float] = None, det_thresh: Optional[float] = None,
sort_by_face_size: bool = False,
) -> List[Face]: ) -> List[Face]:
""" """
Detects and retrieves faces from an image using an analysis model. Detects and retrieves faces from an image using an analysis model.
Args: Args:
img_data (np.ndarray): The image data as a NumPy array. img_data (CV2ImgU8): The image data as a NumPy array.
det_size (tuple): The desired detection size (width, height). Defaults to (640, 640). det_size (tuple): The desired detection size (width, height). Defaults to (640, 640).
sort_by_face_size (bool) : Will sort the faces by their size from larger to smaller face sort_by_face_size (bool) : Will sort the faces by their size from larger to smaller face
@ -309,26 +384,67 @@ def get_faces(
return get_faces(img_data, det_size=det_size_half, det_thresh=det_thresh) return get_faces(img_data, det_size=det_size_half, det_thresh=det_thresh)
try: try:
if sort_by_face_size:
return sorted(
face,
reverse=True,
key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]),
)
# Sort the detected faces based on their x-coordinate of the bounding box # Sort the detected faces based on their x-coordinate of the bounding box
return sorted(face, key=lambda x: x.bbox[0]) return sorted(face, key=lambda x: x.bbox[0])
except Exception as e: except Exception as e:
logger.error("Failed to get faces %s", e)
traceback.print_exc()
return [] return []
@dataclass
class FaceFilteringOptions:
faces_index: Set[int]
source_gender: Optional[int] = None # if none will not use same gender
sort_by_face_size: bool = False
def filter_faces(
all_faces: List[Face], filtering_options: FaceFilteringOptions
) -> List[Face]:
"""
Sorts and filters a list of faces based on specified criteria.
This function takes a list of Face objects and can sort them by face size and filter them by gender.
Sorting by face size is performed if sort_by_face_size is set to True, and filtering by gender is
performed if source_gender is provided.
:param faces: A list of Face objects representing the faces to be sorted and filtered.
:param faces_index: A set of faces index
:param source_gender: An optional integer representing the gender by which to filter the faces.
If provided, only faces with the specified gender will be included in the result.
:param sort_by_face_size: A boolean indicating whether to sort the faces by size. If True, faces are
sorted in descending order by size, calculated as the area of the bounding box.
:return: A list of Face objects sorted and filtered according to the specified criteria.
"""
filtered_faces = copy.copy(all_faces)
if filtering_options.sort_by_face_size:
filtered_faces = sorted(
all_faces,
reverse=True,
key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]),
)
if filtering_options.source_gender is not None:
filtered_faces = [
face
for face in filtered_faces
if face["gender"] == filtering_options.source_gender
]
return [
face
for i, face in enumerate(filtered_faces)
if i in filtering_options.faces_index
]
@dataclass @dataclass
class ImageResult: class ImageResult:
""" """
Represents the result of an image swap operation Represents the result of an image swap operation
""" """
image: Image.Image image: PILImage
""" """
The image object with the swapped face The image object with the swapped face
""" """
@ -362,12 +478,12 @@ def get_or_default(l: List[Any], index: int, default: Any) -> Any:
return l[index] if index < len(l) else default return l[index] if index < len(l) else default
def get_faces_from_img_files(files: List[gr.File]) -> List[Optional[np.ndarray]]: # type: ignore def get_faces_from_img_files(images: List[PILImage]) -> List[Optional[CV2ImgU8]]:
""" """
Extracts faces from a list of image files. Extracts faces from a list of image files.
Args: Args:
files (list): A list of file objects representing image files. images (list): A list of PILImage objects representing image files.
Returns: Returns:
list: A list of detected faces. list: A list of detected faces.
@ -376,9 +492,8 @@ def get_faces_from_img_files(files: List[gr.File]) -> List[Optional[np.ndarray]]
faces = [] faces = []
if len(files) > 0: if len(images) > 0:
for file in files: for img in images:
img = Image.open(file.name) # Open the image file
face = get_or_default( face = get_or_default(
get_faces(pil_to_cv2(img)), 0, None get_faces(pil_to_cv2(img)), 0, None
) # Extract faces from the image ) # Extract faces from the image
@ -388,7 +503,7 @@ def get_faces_from_img_files(files: List[gr.File]) -> List[Optional[np.ndarray]]
return faces return faces
def blend_faces(faces: List[Face]) -> Face: def blend_faces(faces: List[Face]) -> Optional[Face]:
""" """
Blends the embeddings of multiple faces into a single face. Blends the embeddings of multiple faces into a single face.
@ -418,16 +533,10 @@ def blend_faces(faces: List[Face]) -> Face:
# Create a new Face object using the properties of the first face in the list # Create a new Face object using the properties of the first face in the list
# Assign the blended embedding to the blended Face object # Assign the blended embedding to the blended Face object
blended = Face( blended = ISFace(
embedding=blended_embedding, gender=faces[0].gender, age=faces[0].age embedding=blended_embedding, gender=faces[0].gender, age=faces[0].age
) )
assert (
not np.array_equal(blended.embedding, faces[0].embedding)
if len(faces) > 1
else True
), "If len(faces)>0, the blended embedding should not be the same than the first image"
return blended return blended
# Return None if the input list is empty # Return None if the input list is empty
@ -435,99 +544,96 @@ def blend_faces(faces: List[Face]) -> Face:
def swap_face( def swap_face(
reference_face: np.ndarray, # type: ignore reference_face: CV2ImgU8,
source_face: np.ndarray, # type: ignore source_face: Face,
target_img: Image.Image, target_img: PILImage,
target_faces: List[Face],
model: str, model: str,
faces_index: Set[int] = {0}, swapping_options: Optional[InswappperOptions],
same_gender: bool = True,
upscaled_swapper: bool = False,
compute_similarity: bool = True, compute_similarity: bool = True,
sort_by_face_size: bool = False,
) -> ImageResult: ) -> ImageResult:
""" """
Swaps faces in the target image with the source face. Swaps faces in the target image with the source face.
Args: Args:
reference_face (np.ndarray): The reference face used for similarity comparison. reference_face (CV2ImgU8): The reference face used for similarity comparison.
source_face (np.ndarray): The source face to be swapped. source_face (CV2ImgU8): The source face to be swapped.
target_img (Image.Image): The target image to swap faces in. target_img (PILImage): The target image to swap faces in.
model (str): Path to the face swap model. model (str): Path to the face swap model.
faces_index (Set[int], optional): Set of indices specifying which faces to swap. Defaults to {0}.
same_gender (bool, optional): If True, only swap faces with the same gender as the source face. Defaults to True.
Returns: Returns:
ImageResult: An object containing the swapped image and similarity scores. ImageResult: An object containing the swapped image and similarity scores.
""" """
return_result = ImageResult(target_img, {}, {}) return_result = ImageResult(target_img, {}, {})
target_img_cv2: CV2ImgU8 = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
try: try:
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
gender = source_face["gender"] gender = source_face["gender"]
logger.info("Source Gender %s", gender) logger.info("Source Gender %s", gender)
if source_face is not None: if source_face is not None:
result = target_img result = target_img_cv2
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model) model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
face_swapper = getFaceSwapModel(model_path) face_swapper = getFaceSwapModel(model_path)
target_faces = get_faces(target_img, sort_by_face_size=sort_by_face_size)
logger.info("Target faces count : %s", len(target_faces)) logger.info("Target faces count : %s", len(target_faces))
if same_gender:
target_faces = [x for x in target_faces if x["gender"] == gender]
logger.info("Target Gender Matches count %s", len(target_faces))
for i, swapped_face in enumerate(target_faces): for i, swapped_face in enumerate(target_faces):
logger.info(f"swap face {i}") logger.info(f"swap face {i}")
if i in faces_index:
# type : ignore result = face_swapper.get(
result = face_swapper.get( img=result,
result, swapped_face, source_face, upscale=upscaled_swapper target_face=swapped_face,
) source_face=source_face,
options=swapping_options,
) # type: ignore
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
return_result.image = result_image return_result.image = result_image
if compute_similarity:
try:
result_faces = get_faces(
cv2.cvtColor(np.array(result_image), cv2.COLOR_RGB2BGR),
sort_by_face_size=sort_by_face_size,
)
if same_gender:
result_faces = [
x for x in result_faces if x["gender"] == gender
]
for i, swapped_face in enumerate(result_faces):
logger.info(f"compare face {i}")
if i in faces_index and i < len(target_faces):
return_result.similarity[i] = cosine_similarity_face(
source_face, swapped_face
)
return_result.ref_similarity[i] = cosine_similarity_face(
reference_face, swapped_face
)
logger.info(f"similarity {return_result.similarity}")
logger.info(f"ref similarity {return_result.ref_similarity}")
except Exception as e:
logger.error("Similarity processing failed %s", e)
raise e
except Exception as e: except Exception as e:
logger.error("Conversion failed %s", e) logger.error("Conversion failed %s", e)
raise e raise e
return return_result return return_result
def compute_similarity(
reference_face: Face,
source_face: Face,
swapped_image: PILImage,
filtering: FaceFilteringOptions,
) -> Tuple[Dict[int, float], Dict[int, float]]:
similarity: Dict[int, float] = {}
ref_similarity: Dict[int, float] = {}
try:
swapped_image_cv2: CV2ImgU8 = cv2.cvtColor(
np.array(swapped_image), cv2.COLOR_RGB2BGR
)
new_faces = filter_faces(get_faces(swapped_image_cv2), filtering)
if len(new_faces) == 0:
logger.error("compute_similarity : No faces to compare with !")
return None
for i, swapped_face in enumerate(new_faces):
logger.info(f"compare face {i}")
similarity[i] = cosine_similarity_face(source_face, swapped_face)
ref_similarity[i] = cosine_similarity_face(reference_face, swapped_face)
logger.info(f"similarity {similarity}")
logger.info(f"ref similarity {ref_similarity}")
return (similarity, ref_similarity)
except Exception as e:
logger.error("Similarity processing failed %s", e)
raise e
return None
def process_image_unit( def process_image_unit(
model: str, model: str,
unit: FaceSwapUnitSettings, unit: FaceSwapUnitSettings,
image: Image.Image, image: PILImage,
info: str = None, info: str = None,
upscaled_swapper: bool = False,
force_blend: bool = False, force_blend: bool = False,
) -> List[Tuple[Image.Image, str]]: ) -> List[Tuple[PILImage, str]]:
"""Process one image and return a List of (image, info) (one if blended, many if not). """Process one image and return a List of (image, info) (one if blended, many if not).
Args: Args:
@ -541,6 +647,8 @@ def process_image_unit(
results = [] results = []
if unit.enable: if unit.enable:
faces = get_faces(pil_to_cv2(image))
if check_against_nsfw(image): if check_against_nsfw(image):
return [(image, info)] return [(image, info)]
if not unit.blend_faces and not force_blend: if not unit.blend_faces and not force_blend:
@ -549,15 +657,10 @@ def process_image_unit(
else: else:
logger.info("blend all faces together") logger.info("blend all faces together")
src_faces = [unit.blended_faces] src_faces = [unit.blended_faces]
assert (
not np.array_equal(
unit.reference_face.embedding, src_faces[0].embedding
)
if len(unit.faces) > 1
else True
), "Reference face cannot be the same as blended"
for i, src_face in enumerate(src_faces): for i, src_face in enumerate(src_faces):
current_image = image
logger.info(f"Process face {i}") logger.info(f"Process face {i}")
if unit.reference_face is not None: if unit.reference_face is not None:
reference_face = unit.reference_face reference_face = unit.reference_face
@ -565,20 +668,50 @@ def process_image_unit(
logger.info("Use source face as reference face") logger.info("Use source face as reference face")
reference_face = src_face reference_face = src_face
face_filtering_options = FaceFilteringOptions(
faces_index=unit.faces_index,
source_gender=src_face["gender"] if unit.same_gender else None,
sort_by_face_size=unit.sort_by_size,
)
target_faces = filter_faces(faces, filtering_options=face_filtering_options)
# Apply pre-inpainting to image
if unit.pre_inpainting.inpainting_denoising_strengh > 0:
current_image = img2img_diffusion(
img=current_image, faces=target_faces, options=unit.pre_inpainting
)
save_img_debug(image, "Before swap") save_img_debug(image, "Before swap")
result: ImageResult = swap_face( result: ImageResult = swap_face(
reference_face, reference_face=reference_face,
src_face, source_face=src_face,
image, target_img=current_image,
faces_index=unit.faces_index, target_faces=target_faces,
model=model, model=model,
same_gender=unit.same_gender, swapping_options=unit.swapping_options,
upscaled_swapper=upscaled_swapper,
compute_similarity=unit.compute_similarity, compute_similarity=unit.compute_similarity,
sort_by_face_size=unit.sort_by_size,
) )
# Apply post-inpainting to image
if unit.post_inpainting.inpainting_denoising_strengh > 0:
result.image = img2img_diffusion(
img=result.image, faces=target_faces, options=unit.post_inpainting
)
save_img_debug(result.image, "After swap") save_img_debug(result.image, "After swap")
if unit.compute_similarity:
similarities = compute_similarity(
reference_face=reference_face,
source_face=src_face,
swapped_image=result.image,
filtering=face_filtering_options,
)
if similarities:
(result.similarity, result.ref_similarity) = similarities
else:
logger.error("Failed to compute similarity")
if result.image is None: if result.image is None:
logger.error("Result image is None") logger.error("Result image is None")
if ( if (
@ -610,17 +743,16 @@ def process_image_unit(
def process_images_units( def process_images_units(
model: str, model: str,
units: List[FaceSwapUnitSettings], units: List[FaceSwapUnitSettings],
images: List[Tuple[Optional[Image.Image], Optional[str]]], images: List[Tuple[Optional[PILImage], Optional[str]]],
upscaled_swapper: bool = False,
force_blend: bool = False, force_blend: bool = False,
) -> Optional[List[Tuple[Image.Image, str]]]: ) -> Optional[List[Tuple[PILImage, str]]]:
""" """
Process a list of images using a specified model and unit settings for face swapping. Process a list of images using a specified model and unit settings for face swapping.
Args: Args:
model (str): The name of the model to use for processing. model (str): The name of the model to use for processing.
units (List[FaceSwapUnitSettings]): A list of settings for face swap units to apply on each image. units (List[FaceSwapUnitSettings]): A list of settings for face swap units to apply on each image.
images (List[Tuple[Optional[Image.Image], Optional[str]]]): A list of tuples, each containing images (List[Tuple[Optional[PILImage], Optional[str]]]): A list of tuples, each containing
an image and its associated info string. If an image or info string is not available, an image and its associated info string. If an image or info string is not available,
its value can be None. its value can be None.
upscaled_swapper (bool, optional): If True, uses an upscaled version of the face swapper. upscaled_swapper (bool, optional): If True, uses an upscaled version of the face swapper.
@ -629,7 +761,7 @@ def process_images_units(
image. Defaults to False. image. Defaults to False.
Returns: Returns:
Optional[List[Tuple[Image.Image, str]]]: A list of tuples, each containing a processed image Optional[List[Tuple[PILImage, str]]]: A list of tuples, each containing a processed image
and its associated info string. If no units are provided for processing, returns None. and its associated info string. If no units are provided for processing, returns None.
""" """
@ -642,13 +774,9 @@ def process_images_units(
processed_images = [] processed_images = []
for i, (image, info) in enumerate(images): for i, (image, info) in enumerate(images):
logger.debug("Processing image %s", i) logger.debug("Processing image %s", i)
swapped = process_image_unit( swapped = process_image_unit(model, units[0], image, info, force_blend)
model, units[0], image, info, upscaled_swapper, force_blend
)
logger.debug("Image %s -> %s images", i, len(swapped)) logger.debug("Image %s -> %s images", i, len(swapped))
nexts = process_images_units( nexts = process_images_units(model, units[1:], swapped, force_blend)
model, units[1:], swapped, upscaled_swapper, force_blend
)
if nexts: if nexts:
processed_images.extend(nexts) processed_images.extend(nexts)
else: else:

@ -0,0 +1,38 @@
from dataclasses import *
from client_api import api_utils
@dataclass
class InswappperOptions:
face_restorer_name: str = None
restorer_visibility: float = 1
codeformer_weight: float = 1
upscaler_name: str = None
improved_mask: bool = False
color_corrections: bool = False
sharpen: bool = False
erosion_factor: float = 1.0
@staticmethod
def from_api_dto(dto: api_utils.InswappperOptions) -> "InswappperOptions":
"""
Converts a InpaintingOptions object from an API DTO (Data Transfer Object).
:param options: An object of api_utils.InpaintingOptions representing the
post-processing options as received from the API.
:return: A InpaintingOptions instance containing the translated values
from the API DTO.
"""
if dto is None:
return InswappperOptions()
return InswappperOptions(
face_restorer_name=dto.face_restorer_name,
restorer_visibility=dto.restorer_visibility,
codeformer_weight=dto.codeformer_weight,
upscaler_name=dto.upscaler_name,
improved_mask=dto.improved_mask,
color_corrections=dto.color_corrections,
sharpen=dto.sharpen,
erosion_factor=dto.erosion_factor,
)

@ -1,3 +1,4 @@
from typing import Any, Tuple, Union
import cv2 import cv2
import numpy as np import numpy as np
from insightface.model_zoo.inswapper import INSwapper from insightface.model_zoo.inswapper import INSwapper
@ -11,7 +12,10 @@ from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
) )
from scripts.faceswaplab_swapping.facemask import generate_face_mask from scripts.faceswaplab_swapping.facemask import generate_face_mask
from scripts.faceswaplab_swapping.upcaled_inswapper_options import InswappperOptions
from scripts.faceswaplab_utils.imgutils import cv2_to_pil, pil_to_cv2 from scripts.faceswaplab_utils.imgutils import cv2_to_pil, pil_to_cv2
from scripts.faceswaplab_utils.typing import CV2ImgU8, Face
from scripts.faceswaplab_utils.faceswaplab_logging import logger
def get_upscaler() -> UpscalerData: def get_upscaler() -> UpscalerData:
@ -23,7 +27,25 @@ def get_upscaler() -> UpscalerData:
return None return None
def merge_images_with_mask(image1, image2, mask): def merge_images_with_mask(
image1: CV2ImgU8, image2: CV2ImgU8, mask: CV2ImgU8
) -> CV2ImgU8:
"""
Merges two images using a given mask. The regions where the mask is set will be replaced with the corresponding
areas of the second image.
Args:
image1 (CV2Img): The base image, which must have the same shape as image2.
image2 (CV2Img): The image to be merged, which must have the same shape as image1.
mask (CV2Img): A binary mask specifying the regions to be merged. The mask shape should match image1's first two dimensions.
Returns:
CV2Img: The merged image.
Raises:
ValueError: If the shapes of the images and mask do not match.
"""
if image1.shape != image2.shape or image1.shape[:2] != mask.shape: if image1.shape != image2.shape or image1.shape[:2] != mask.shape:
raise ValueError("Img should have the same shape") raise ValueError("Img should have the same shape")
mask = mask.astype(np.uint8) mask = mask.astype(np.uint8)
@ -34,64 +56,108 @@ def merge_images_with_mask(image1, image2, mask):
return merged_image return merged_image
def erode_mask(mask, kernel_size=3, iterations=1): def erode_mask(mask: CV2ImgU8, kernel_size: int = 3, iterations: int = 1) -> CV2ImgU8:
"""
Erodes a binary mask using a given kernel size and number of iterations.
Args:
mask (CV2Img): The binary mask to erode.
kernel_size (int, optional): The size of the kernel. Default is 3.
iterations (int, optional): The number of erosion iterations. Default is 1.
Returns:
CV2Img: The eroded mask.
"""
kernel = np.ones((kernel_size, kernel_size), np.uint8) kernel = np.ones((kernel_size, kernel_size), np.uint8)
eroded_mask = cv2.erode(mask, kernel, iterations=iterations) eroded_mask = cv2.erode(mask, kernel, iterations=iterations)
return eroded_mask return eroded_mask
def apply_gaussian_blur(mask, kernel_size=(5, 5), sigma_x=0): def apply_gaussian_blur(
mask: CV2ImgU8, kernel_size: Tuple[int, int] = (5, 5), sigma_x: int = 0
) -> CV2ImgU8:
"""
Applies a Gaussian blur to a mask.
Args:
mask (CV2Img): The mask to blur.
kernel_size (tuple, optional): The size of the kernel, e.g. (5, 5). Default is (5, 5).
sigma_x (int, optional): The standard deviation in the X direction. Default is 0.
Returns:
CV2Img: The blurred mask.
"""
blurred_mask = cv2.GaussianBlur(mask, kernel_size, sigma_x) blurred_mask = cv2.GaussianBlur(mask, kernel_size, sigma_x)
return blurred_mask return blurred_mask
def dilate_mask(mask, kernel_size=5, iterations=1): def dilate_mask(mask: CV2ImgU8, kernel_size: int = 5, iterations: int = 1) -> CV2ImgU8:
"""
Dilates a binary mask using a given kernel size and number of iterations.
Args:
mask (CV2Img): The binary mask to dilate.
kernel_size (int, optional): The size of the kernel. Default is 5.
iterations (int, optional): The number of dilation iterations. Default is 1.
Returns:
CV2Img: The dilated mask.
"""
kernel = np.ones((kernel_size, kernel_size), np.uint8) kernel = np.ones((kernel_size, kernel_size), np.uint8)
dilated_mask = cv2.dilate(mask, kernel, iterations=iterations) dilated_mask = cv2.dilate(mask, kernel, iterations=iterations)
return dilated_mask return dilated_mask
def get_face_mask(aimg, bgr_fake): def get_face_mask(aimg: CV2ImgU8, bgr_fake: CV2ImgU8) -> CV2ImgU8:
"""
Generates a face mask by performing bitwise OR on two face masks and then dilating the result.
Args:
aimg (CV2Img): Input image for generating the first face mask.
bgr_fake (CV2Img): Input image for generating the second face mask.
Returns:
CV2Img: The combined and dilated face mask.
"""
mask1 = generate_face_mask(aimg, device=shared.device) mask1 = generate_face_mask(aimg, device=shared.device)
mask2 = generate_face_mask(bgr_fake, device=shared.device) mask2 = generate_face_mask(bgr_fake, device=shared.device)
mask = dilate_mask(cv2.bitwise_or(mask1, mask2)) mask = dilate_mask(cv2.bitwise_or(mask1, mask2))
return mask return mask
class UpscaledINSwapper: class UpscaledINSwapper(INSwapper):
def __init__(self, inswapper: INSwapper): def __init__(self, inswapper: INSwapper):
self.__dict__.update(inswapper.__dict__) self.__dict__.update(inswapper.__dict__)
def forward(self, img, latent): def upscale_and_restore(
img = (img - self.input_mean) / self.input_std self, img: CV2ImgU8, k: int = 2, inswapper_options: InswappperOptions = None
pred = self.session.run( ) -> CV2ImgU8:
self.output_names, {self.input_names[0]: img, self.input_names[1]: latent}
)[0]
return pred
def super_resolution(self, img, k=2):
pil_img = cv2_to_pil(img) pil_img = cv2_to_pil(img)
options = PostProcessingOptions( pp_options = PostProcessingOptions(
upscaler_name=opts.data.get( upscaler_name=inswapper_options.upscaler_name,
"faceswaplab_upscaled_swapper_upscaler", "LDSR"
),
upscale_visibility=1, upscale_visibility=1,
scale=k, scale=k,
face_restorer_name=opts.data.get( face_restorer_name=inswapper_options.face_restorer_name,
"faceswaplab_upscaled_swapper_face_restorer", "" codeformer_weight=inswapper_options.codeformer_weight,
), restorer_visibility=inswapper_options.restorer_visibility,
codeformer_weight=opts.data.get(
"faceswaplab_upscaled_swapper_face_restorer_weight", 1
),
restorer_visibility=opts.data.get(
"faceswaplab_upscaled_swapper_face_restorer_visibility", 1
),
) )
upscaled = upscaling.upscale_img(pil_img, options)
upscaled = upscaling.restore_face(upscaled, options) upscaled = pil_img
if pp_options.upscaler_name:
upscaled = upscaling.upscale_img(pil_img, pp_options)
if pp_options.face_restorer_name:
upscaled = upscaling.restore_face(upscaled, pp_options)
return pil_to_cv2(upscaled) return pil_to_cv2(upscaled)
def get(self, img, target_face, source_face, paste_back=True, upscale=True): def get(
self,
img: CV2ImgU8,
target_face: Face,
source_face: Face,
paste_back: bool = True,
options: InswappperOptions = None,
) -> Union[CV2ImgU8, Tuple[CV2ImgU8, Any]]:
aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0]) aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0])
blob = cv2.dnn.blobFromImage( blob = cv2.dnn.blobFromImage(
aimg, aimg,
@ -116,7 +182,7 @@ class UpscaledINSwapper:
else: else:
target_img = img target_img = img
def compute_diff(bgr_fake, aimg): def compute_diff(bgr_fake: CV2ImgU8, aimg: CV2ImgU8) -> CV2ImgU8:
fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32) fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
fake_diff = np.abs(fake_diff).mean(axis=2) fake_diff = np.abs(fake_diff).mean(axis=2)
fake_diff[:2, :] = 0 fake_diff[:2, :] = 0
@ -125,43 +191,49 @@ class UpscaledINSwapper:
fake_diff[:, -2:] = 0 fake_diff[:, -2:] = 0
return fake_diff return fake_diff
if upscale: if options:
print("*" * 80) logger.info("*" * 80)
print( logger.info(f"Inswapper")
f"Upscaled inswapper using {opts.data.get('faceswaplab_upscaled_swapper_upscaler', 'LDSR')}"
)
print("*" * 80)
k = 4 if options.upscaler_name:
aimg, M = face_align.norm_crop2( # Upscale original image
img, target_face.kps, self.input_size[0] * k k = 4
) aimg, M = face_align.norm_crop2(
img, target_face.kps, self.input_size[0] * k
)
else:
k = 1
# upscale and restore face : # upscale and restore face :
bgr_fake = self.super_resolution(bgr_fake, k) bgr_fake = self.upscale_and_restore(
bgr_fake, inswapper_options=options, k=k
)
if opts.data.get("faceswaplab_upscaled_improved_mask", True): if options.improved_mask:
logger.info("improved_mask")
mask = get_face_mask(aimg, bgr_fake) mask = get_face_mask(aimg, bgr_fake)
bgr_fake = merge_images_with_mask(aimg, bgr_fake, mask) bgr_fake = merge_images_with_mask(aimg, bgr_fake, mask)
# compute fake_diff before sharpen and color correction (better result) # compute fake_diff before sharpen and color correction (better result)
fake_diff = compute_diff(bgr_fake, aimg) fake_diff = compute_diff(bgr_fake, aimg)
if opts.data.get("faceswaplab_upscaled_swapper_sharpen", True): if options.sharpen:
print("sharpen") logger.info("sharpen")
# Add sharpness # Add sharpness
blurred = cv2.GaussianBlur(bgr_fake, (0, 0), 3) blurred = cv2.GaussianBlur(bgr_fake, (0, 0), 3)
bgr_fake = cv2.addWeighted(bgr_fake, 1.5, blurred, -0.5, 0) bgr_fake = cv2.addWeighted(bgr_fake, 1.5, blurred, -0.5, 0)
# Apply color corrections # Apply color corrections
if opts.data.get("faceswaplab_upscaled_swapper_fixcolor", True): if options.color_corrections:
print("color correction") logger.info("color correction")
correction = processing.setup_color_correction(cv2_to_pil(aimg)) correction = processing.setup_color_correction(cv2_to_pil(aimg))
bgr_fake_pil = processing.apply_color_correction( bgr_fake_pil = processing.apply_color_correction(
correction, cv2_to_pil(bgr_fake) correction, cv2_to_pil(bgr_fake)
) )
bgr_fake = pil_to_cv2(bgr_fake_pil) bgr_fake = pil_to_cv2(bgr_fake_pil)
logger.info("*" * 80)
else: else:
fake_diff = compute_diff(bgr_fake, aimg) fake_diff = compute_diff(bgr_fake, aimg)
@ -189,7 +261,7 @@ class UpscaledINSwapper:
borderValue=0.0, borderValue=0.0,
) )
img_white[img_white > 20] = 255 img_white[img_white > 20] = 255
fthresh = opts.data.get("faceswaplab_upscaled_swapper_fthresh", 10) fthresh = 10
print("fthresh", fthresh) print("fthresh", fthresh)
fake_diff[fake_diff < fthresh] = 0 fake_diff[fake_diff < fthresh] = 0
fake_diff[fake_diff >= fthresh] = 255 fake_diff[fake_diff >= fthresh] = 255
@ -198,9 +270,8 @@ class UpscaledINSwapper:
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
mask_size = int(np.sqrt(mask_h * mask_w)) mask_size = int(np.sqrt(mask_h * mask_w))
erosion_factor = opts.data.get( erosion_factor = options.erosion_factor
"faceswaplab_upscaled_swapper_erosion", 1
)
k = max(int(mask_size // 10 * erosion_factor), int(10 * erosion_factor)) k = max(int(mask_size // 10 * erosion_factor), int(10 * erosion_factor))
kernel = np.ones((k, k), np.uint8) kernel = np.ones((k, k), np.uint8)

@ -0,0 +1,68 @@
from typing import List
import gradio as gr
from modules.shared import opts
from modules import sd_models, sd_samplers
def face_inpainting_ui(
name: str, id_prefix: str = "faceswaplab", description: str = ""
) -> List[gr.components.Component]:
with gr.Accordion(name, open=False):
gr.Markdown(description)
inpainting_denoising_strength = gr.Slider(
0,
1,
0,
step=0.01,
elem_id=f"{id_prefix}_pp_inpainting_denoising_strength",
label="Denoising strenght",
)
inpainting_denoising_prompt = gr.Textbox(
opts.data.get(
"faceswaplab_pp_default_inpainting_prompt", "Portrait of a [gender]"
),
elem_id=f"{id_prefix}_pp_inpainting_denoising_prompt",
label="Inpainting prompt use [gender] instead of men or woman",
)
inpainting_denoising_negative_prompt = gr.Textbox(
opts.data.get(
"faceswaplab_pp_default_inpainting_negative_prompt", "blurry"
),
elem_id=f"{id_prefix}_pp_inpainting_denoising_neg_prompt",
label="Inpainting negative prompt use [gender] instead of men or woman",
)
with gr.Row():
samplers_names = [s.name for s in sd_samplers.all_samplers]
inpainting_sampler = gr.Dropdown(
choices=samplers_names,
value=[samplers_names[0]],
label="Inpainting Sampler",
elem_id=f"{id_prefix}_pp_inpainting_sampler",
)
inpainting_denoising_steps = gr.Slider(
1,
150,
20,
step=1,
label="Inpainting steps",
elem_id=f"{id_prefix}_pp_inpainting_steps",
)
inpaiting_model = gr.Dropdown(
choices=["Current"] + sd_models.checkpoint_tiles(),
default="Current",
label="sd model (experimental)",
elem_id=f"{id_prefix}_pp_inpainting_sd_model",
)
gradio_components: List[gr.components.Component] = [
inpainting_denoising_strength,
inpainting_denoising_prompt,
inpainting_denoising_negative_prompt,
inpainting_denoising_steps,
inpainting_sampler,
inpaiting_model,
]
return gradio_components

@ -7,9 +7,9 @@ from scripts.faceswaplab_postprocessing.postprocessing_options import Inpainting
def postprocessing_ui() -> List[gr.components.Component]: def postprocessing_ui() -> List[gr.components.Component]:
with gr.Tab(f"Post-Processing"): with gr.Tab(f"Global Post-Processing"):
gr.Markdown( gr.Markdown(
"""Upscaling is performed on the whole image. Upscaling happens before face restoration.""" """Upscaling is performed on the whole image and all faces (including not swapped). Upscaling happens before face restoration."""
) )
with gr.Row(): with gr.Row():
face_restorer_name = gr.Radio( face_restorer_name = gr.Radio(
@ -17,7 +17,7 @@ def postprocessing_ui() -> List[gr.components.Component]:
choices=["None"] + [x.name() for x in shared.face_restorers], choices=["None"] + [x.name() for x in shared.face_restorers],
value=lambda: opts.data.get( value=lambda: opts.data.get(
"faceswaplab_pp_default_face_restorer", "faceswaplab_pp_default_face_restorer",
shared.face_restorers[0].name(), "None",
), ),
type="value", type="value",
elem_id="faceswaplab_pp_face_restorer", elem_id="faceswaplab_pp_face_restorer",
@ -130,11 +130,11 @@ def postprocessing_ui() -> List[gr.components.Component]:
upscaler_name, upscaler_name,
upscaler_scale, upscaler_scale,
upscaler_visibility, upscaler_visibility,
inpainting_when,
inpainting_denoising_strength, inpainting_denoising_strength,
inpainting_denoising_prompt, inpainting_denoising_prompt,
inpainting_denoising_negative_prompt, inpainting_denoising_negative_prompt,
inpainting_denoising_steps, inpainting_denoising_steps,
inpainting_sampler, inpainting_sampler,
inpainting_when,
inpaiting_model, inpaiting_model,
] ]

@ -1,31 +1,27 @@
import os import traceback
from pprint import pformat, pprint from pprint import pformat
from scripts.faceswaplab_utils import face_utils from typing import *
from scripts.faceswaplab_utils.typing import *
import gradio as gr import gradio as gr
import modules.scripts as scripts
import onnx import onnx
import pandas as pd import pandas as pd
from scripts.faceswaplab_ui.faceswaplab_unit_ui import faceswap_unit_ui
from scripts.faceswaplab_ui.faceswaplab_postprocessing_ui import postprocessing_ui
from modules import scripts
from PIL import Image
from modules.shared import opts from modules.shared import opts
from PIL import Image
from scripts.faceswaplab_utils import imgutils
from scripts.faceswaplab_utils.models_utils import get_models
from scripts.faceswaplab_utils.faceswaplab_logging import logger
import scripts.faceswaplab_swapping.swapper as swapper import scripts.faceswaplab_swapping.swapper as swapper
from scripts.faceswaplab_postprocessing.postprocessing_options import ( from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
) )
from scripts.faceswaplab_postprocessing.postprocessing import enhance_image from scripts.faceswaplab_ui.faceswaplab_postprocessing_ui import postprocessing_ui
from dataclasses import fields
from typing import Any, Dict, List, Optional
from scripts.faceswaplab_ui.faceswaplab_unit_settings import FaceSwapUnitSettings from scripts.faceswaplab_ui.faceswaplab_unit_settings import FaceSwapUnitSettings
import re from scripts.faceswaplab_ui.faceswaplab_unit_ui import faceswap_unit_ui
from scripts.faceswaplab_utils import face_checkpoints_utils, imgutils
from scripts.faceswaplab_utils.faceswaplab_logging import logger
from scripts.faceswaplab_utils.models_utils import get_models
from scripts.faceswaplab_utils.ui_utils import dataclasses_from_flat_list
def compare(img1: Image.Image, img2: Image.Image) -> str: def compare(img1: PILImage, img2: PILImage) -> str:
""" """
Compares the similarity between two faces extracted from images using cosine similarity. Compares the similarity between two faces extracted from images using cosine similarity.
@ -43,14 +39,15 @@ def compare(img1: Image.Image, img2: Image.Image) -> str:
except Exception as e: except Exception as e:
logger.error("Fail to compare", e) logger.error("Fail to compare", e)
traceback.print_exc()
return "You need 2 images to compare" return "You need 2 images to compare"
def extract_faces( def extract_faces(
files: List[gr.File], files: List[gr.File],
extract_path: Optional[str], extract_path: Optional[str],
*components: List[gr.components.Component], *components: Tuple[gr.components.Component, ...],
) -> Optional[List[Image.Image]]: ) -> Optional[List[PILImage]]:
""" """
Extracts faces from a list of image files. Extracts faces from a list of image files.
@ -69,22 +66,34 @@ def extract_faces(
If no faces are found, None is returned. If no faces are found, None is returned.
""" """
postprocess_options = PostProcessingOptions(*components) # type: ignore if files and len(files) == 0:
images = [ logger.error("You need at least one image file to extract")
Image.open(file.name) for file in files return []
] # potentially greedy but Image.open is supposed to be lazy try:
return swapper.extract_faces( postprocess_options = dataclasses_from_flat_list(
images, extract_path=extract_path, postprocess_options=postprocess_options [PostProcessingOptions], components
) ).pop()
images = [
Image.open(file.name) for file in files
] # potentially greedy but Image.open is supposed to be lazy
result_images = swapper.extract_faces(
images, extract_path=extract_path, postprocess_options=postprocess_options
)
return result_images
except Exception as e:
logger.error("Failed to extract : %s", e)
traceback.print_exc()
return None
def analyse_faces(image: Image.Image, det_threshold: float = 0.5) -> Optional[str]: def analyse_faces(image: PILImage, det_threshold: float = 0.5) -> Optional[str]:
""" """
Function to analyze the faces in an image and provide a detailed report. Function to analyze the faces in an image and provide a detailed report.
Parameters Parameters
---------- ----------
image : PIL.Image.Image image : PIL.PILImage
The input image where faces will be detected. The image must be a PIL Image object. The input image where faces will be detected. The image must be a PIL Image object.
det_threshold : float, optional det_threshold : float, optional
@ -122,27 +131,13 @@ def analyse_faces(image: Image.Image, det_threshold: float = 0.5) -> Optional[st
except Exception as e: except Exception as e:
logger.error("Analysis Failed : %s", e) logger.error("Analysis Failed : %s", e)
traceback.print_exc()
return None return None
def sanitize_name(name: str) -> str:
"""
Sanitize the input name by removing special characters and replacing spaces with underscores.
Parameters:
name (str): The input name to be sanitized.
Returns:
str: The sanitized name with special characters removed and spaces replaced by underscores.
"""
name = re.sub("[^A-Za-z0-9_. ]+", "", name)
name = name.replace(" ", "_")
return name[:255]
def build_face_checkpoint_and_save( def build_face_checkpoint_and_save(
batch_files: gr.File, name: str batch_files: gr.File, name: str, overwrite: bool
) -> Optional[Image.Image]: ) -> PILImage:
""" """
Builds a face checkpoint using the provided image files, performs face swapping, Builds a face checkpoint using the provided image files, performs face swapping,
and saves the result to a file. If a blended face is successfully obtained and the face swapping and saves the result to a file. If a blended face is successfully obtained and the face swapping
@ -153,66 +148,23 @@ def build_face_checkpoint_and_save(
name (str): The name assigned to the face checkpoint. name (str): The name assigned to the face checkpoint.
Returns: Returns:
PIL.Image.Image or None: The resulting swapped face image if the process is successful; None otherwise. PIL.PILImage or None: The resulting swapped face image if the process is successful; None otherwise.
""" """
try: try:
name = sanitize_name(name) if not batch_files:
batch_files = batch_files or [] logger.error("No face found")
logger.info("Build %s %s", name, [x.name for x in batch_files]) return None
faces = swapper.get_faces_from_img_files(batch_files) images = [Image.open(file.name) for file in batch_files]
blended_face = swapper.blend_faces(faces) preview_image = face_checkpoints_utils.build_face_checkpoint_and_save(
preview_path = os.path.join( images, name, overwrite=overwrite
scripts.basedir(), "extensions", "sd-webui-faceswaplab", "references"
) )
faces_path = os.path.join(scripts.basedir(), "models", "faceswaplab", "faces")
os.makedirs(faces_path, exist_ok=True)
target_img = None
if blended_face:
if blended_face["gender"] == 0:
target_img = Image.open(os.path.join(preview_path, "woman.png"))
else:
target_img = Image.open(os.path.join(preview_path, "man.png"))
if name == "":
name = "default_name"
pprint(blended_face)
result = swapper.swap_face(
blended_face, blended_face, target_img, get_models()[0]
)
result_image = enhance_image(
result.image,
PostProcessingOptions(
face_restorer_name="CodeFormer", restorer_visibility=1
),
)
file_path = os.path.join(faces_path, f"{name}.safetensors")
file_number = 1
while os.path.exists(file_path):
file_path = os.path.join(
faces_path, f"{name}_{file_number}.safetensors"
)
file_number += 1
result_image.save(file_path + ".png")
face_utils.save_face(filename=file_path, face=blended_face)
try:
data = face_utils.load_face(filename=file_path)
print(data)
except Exception as e:
print(e)
return result_image
print("No face found")
except Exception as e: except Exception as e:
logger.error("Failed to build checkpoint %s", e) logger.error("Failed to build checkpoint %s", e)
return None
return target_img traceback.print_exc()
return None
return preview_image
def explore_onnx_faceswap_model(model_path: str) -> pd.DataFrame: def explore_onnx_faceswap_model(model_path: str) -> pd.DataFrame:
@ -242,36 +194,32 @@ def explore_onnx_faceswap_model(model_path: str) -> pd.DataFrame:
df = pd.DataFrame(data) df = pd.DataFrame(data)
except Exception as e: except Exception as e:
logger.info("Failed to explore model %s", e) logger.error("Failed to explore model %s", e)
traceback.print_exc()
return None return None
return df return df
def batch_process( def batch_process(
files: List[gr.File], save_path: str, *components: List[gr.components.Component] files: List[gr.File], save_path: str, *components: Tuple[Any, ...]
) -> Optional[List[Image.Image]]: ) -> List[PILImage]:
try: try:
units_count = opts.data.get("faceswaplab_units_count", 3) units_count = opts.data.get("faceswaplab_units_count", 3)
units: List[FaceSwapUnitSettings] = []
# Parse and convert units flat components into FaceSwapUnitSettings classes: List[Any] = dataclasses_from_flat_list(
for i in range(0, units_count): [FaceSwapUnitSettings] * units_count + [PostProcessingOptions],
units += [FaceSwapUnitSettings.get_unit_configuration(i, components)] # type: ignore components,
for i, u in enumerate(units):
logger.debug("%s, %s", pformat(i), pformat(u))
# Parse the postprocessing options
# We must first find where to start from (after face swapping units)
len_conf: int = len(fields(FaceSwapUnitSettings))
shift: int = units_count * len_conf
postprocess_options = PostProcessingOptions(
*components[shift : shift + len(fields(PostProcessingOptions))] # type: ignore
) )
logger.debug("%s", pformat(postprocess_options)) units: List[FaceSwapUnitSettings] = [
u for u in classes if isinstance(u, FaceSwapUnitSettings)
]
postprocess_options = classes[-1]
images = [ images = [
Image.open(file.name) for file in files Image.open(file.name) for file in files
] # potentially greedy but Image.open is supposed to be lazy ] # potentially greedy but Image.open is supposed to be lazy
return swapper.batch_process( return swapper.batch_process(
images, images,
save_path=save_path, save_path=save_path,
@ -280,10 +228,9 @@ def batch_process(
) )
except Exception as e: except Exception as e:
logger.error("Batch Process error : %s", e) logger.error("Batch Process error : %s", e)
import traceback
traceback.print_exc() traceback.print_exc()
return None return []
def tools_ui() -> None: def tools_ui() -> None:
@ -294,7 +241,7 @@ def tools_ui() -> None:
"""Build a face based on a batch list of images. Will blend the resulting face and store the checkpoint in the faceswaplab/faces directory.""" """Build a face based on a batch list of images. Will blend the resulting face and store the checkpoint in the faceswaplab/faces directory."""
) )
with gr.Row(): with gr.Row():
batch_files = gr.components.File( build_batch_files = gr.components.File(
type="file", type="file",
file_count="multiple", file_count="multiple",
label="Batch Sources Images", label="Batch Sources Images",
@ -304,15 +251,23 @@ def tools_ui() -> None:
preview = gr.components.Image( preview = gr.components.Image(
type="pil", type="pil",
label="Preview", label="Preview",
width=512,
height=512,
interactive=False, interactive=False,
elem_id="faceswaplab_build_preview_face", elem_id="faceswaplab_build_preview_face",
) )
name = gr.Textbox( build_name = gr.Textbox(
value="Face", value="Face",
placeholder="Name of the character", placeholder="Name of the character",
label="Name of the character", label="Name of the character",
elem_id="faceswaplab_build_character_name", elem_id="faceswaplab_build_character_name",
) )
build_overwrite = gr.Checkbox(
False,
placeholder="overwrite",
label="Overwrite Checkpoint if exist (else will add number)",
elem_id="faceswaplab_build_overwrite",
)
generate_checkpoint_btn = gr.Button( generate_checkpoint_btn = gr.Button(
"Save", elem_id="faceswaplab_build_save_btn" "Save", elem_id="faceswaplab_build_save_btn"
) )
@ -427,7 +382,9 @@ def tools_ui() -> None:
) )
compare_btn.click(compare, inputs=[img1, img2], outputs=[compare_result_text]) compare_btn.click(compare, inputs=[img1, img2], outputs=[compare_result_text])
generate_checkpoint_btn.click( generate_checkpoint_btn.click(
build_face_checkpoint_and_save, inputs=[batch_files, name], outputs=[preview] build_face_checkpoint_and_save,
inputs=[build_batch_files, build_name, build_overwrite],
outputs=[preview],
) )
extract_btn.click( extract_btn.click(
extract_faces, extract_faces,

@ -1,15 +1,17 @@
from scripts.faceswaplab_swapping import swapper from scripts.faceswaplab_swapping import swapper
import numpy as np
import base64 import base64
import io import io
from dataclasses import dataclass, fields from dataclasses import dataclass
from typing import Any, List, Optional, Set, Union from typing import List, Optional, Set, Union
import gradio as gr import gradio as gr
from insightface.app.common import Face from insightface.app.common import Face
from PIL import Image from PIL import Image
from scripts.faceswaplab_swapping.upcaled_inswapper_options import InswappperOptions
from scripts.faceswaplab_utils.imgutils import pil_to_cv2 from scripts.faceswaplab_utils.imgutils import pil_to_cv2
from scripts.faceswaplab_utils.faceswaplab_logging import logger from scripts.faceswaplab_utils.faceswaplab_logging import logger
from scripts.faceswaplab_utils import face_utils from scripts.faceswaplab_utils import face_checkpoints_utils
from scripts.faceswaplab_inpainting.faceswaplab_inpainting import InpaintingOptions
from client_api import api_utils
@dataclass @dataclass
@ -17,11 +19,11 @@ class FaceSwapUnitSettings:
# ORDER of parameters is IMPORTANT. It should match the result of faceswap_unit_ui # ORDER of parameters is IMPORTANT. It should match the result of faceswap_unit_ui
# The image given in reference # The image given in reference
source_img: Union[Image.Image, str] source_img: Optional[Union[Image.Image, str]]
# The checkpoint file # The checkpoint file
source_face: str source_face: Optional[str]
# The batch source images # The batch source images
_batch_files: Union[gr.components.File, List[Image.Image]] _batch_files: Optional[Union[gr.components.File, List[Image.Image]]]
# Will blend faces if True # Will blend faces if True
blend_faces: bool blend_faces: bool
# Enable this unit # Enable this unit
@ -48,14 +50,42 @@ class FaceSwapUnitSettings:
swap_in_source: bool swap_in_source: bool
# Swap in the generated image in img2img (always on for txt2img) # Swap in the generated image in img2img (always on for txt2img)
swap_in_generated: bool swap_in_generated: bool
# Pre inpainting configuration (Don't use optional for this or gradio parsing will fail) :
pre_inpainting: InpaintingOptions
# Configure swapping options
swapping_options: InswappperOptions
# Post inpainting configuration (Don't use optional for this or gradio parsing will fail) :
post_inpainting: InpaintingOptions
@staticmethod @staticmethod
def get_unit_configuration( def from_api_dto(dto: api_utils.FaceSwapUnit) -> "FaceSwapUnitSettings":
unit: int, components: List[gr.components.Component] """
) -> Any: Converts a InpaintingOptions object from an API DTO (Data Transfer Object).
fields_count = len(fields(FaceSwapUnitSettings))
:param options: An object of api_utils.InpaintingOptions representing the
post-processing options as received from the API.
:return: A InpaintingOptions instance containing the translated values
from the API DTO.
"""
return FaceSwapUnitSettings( return FaceSwapUnitSettings(
*components[unit * fields_count : unit * fields_count + fields_count] source_img=api_utils.base64_to_pil(dto.source_img),
source_face=dto.source_face,
_batch_files=dto.get_batch_images(),
blend_faces=dto.blend_faces,
enable=True,
same_gender=dto.same_gender,
sort_by_size=dto.sort_by_size,
check_similarity=dto.check_similarity,
_compute_similarity=dto.compute_similarity,
min_ref_sim=dto.min_ref_sim,
min_sim=dto.min_sim,
_faces_index=",".join([str(i) for i in (dto.faces_index)]),
reference_face_index=dto.reference_face_index,
swap_in_generated=True,
swap_in_source=False,
pre_inpainting=InpaintingOptions.from_api_dto(dto.pre_inpainting),
swapping_options=InswappperOptions.from_api_dto(dto.swapping_options),
post_inpainting=InpaintingOptions.from_api_dto(dto.post_inpainting),
) )
@property @property
@ -92,14 +122,13 @@ class FaceSwapUnitSettings:
""" """
if not hasattr(self, "_reference_face"): if not hasattr(self, "_reference_face"):
if self.source_face and self.source_face != "None": if self.source_face and self.source_face != "None":
with open(self.source_face, "rb") as file: try:
try: logger.info(f"loading face {self.source_face}")
logger.info(f"loading face {file.name}") face = face_checkpoints_utils.load_face(self.source_face)
face = face_utils.load_face(file.name) self._reference_face = face
self._reference_face = face except Exception as e:
except Exception as e: logger.error("Failed to load checkpoint : %s", e)
logger.error("Failed to load checkpoint : %s", e) raise e
raise e
elif self.source_img is not None: elif self.source_img is not None:
if isinstance(self.source_img, str): # source_img is a base64 string if isinstance(self.source_img, str): # source_img is a base64 string
if ( if (
@ -156,24 +185,5 @@ class FaceSwapUnitSettings:
""" """
if not hasattr(self, "_blended_faces"): if not hasattr(self, "_blended_faces"):
self._blended_faces = swapper.blend_faces(self.faces) self._blended_faces = swapper.blend_faces(self.faces)
assert (
all(
[
not np.array_equal(
self._blended_faces.embedding, face.embedding
)
for face in self.faces
]
)
if len(self.faces) > 1
else True
), "Blended faces cannot be the same as one of the face if len(face)>0"
assert (
not np.array_equal(
self._blended_faces.embedding, self.reference_face.embedding
)
if len(self.faces) > 1
else True
), "Blended faces cannot be the same as reference face if len(face)>0"
return self._blended_faces return self._blended_faces

@ -1,6 +1,101 @@
from typing import List from typing import List
from scripts.faceswaplab_utils.face_utils import get_face_checkpoints from scripts.faceswaplab_ui.faceswaplab_inpainting_ui import face_inpainting_ui
from scripts.faceswaplab_utils.face_checkpoints_utils import get_face_checkpoints
import gradio as gr import gradio as gr
from modules.shared import opts
from modules import shared
def faceswap_unit_advanced_options(
is_img2img: bool, unit_num: int = 1, id_prefix: str = "faceswaplab_"
) -> List[gr.components.Component]:
with gr.Accordion(f"Post-Processing & Advanced Mask Options", open=False):
gr.Markdown("""Post-processing and mask settings for unit faces""")
with gr.Row():
face_restorer_name = gr.Radio(
label="Restore Face",
choices=["None"] + [x.name() for x in shared.face_restorers],
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_face_restorer",
"None",
),
type="value",
elem_id=f"{id_prefix}_face{unit_num}_face_restorer",
)
with gr.Column():
face_restorer_visibility = gr.Slider(
0,
1,
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_face_restorer_visibility",
1.0,
),
step=0.001,
label="Restore visibility",
elem_id=f"{id_prefix}_face{unit_num}_face_restorer_visibility",
)
codeformer_weight = gr.Slider(
0,
1,
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_face_restorer_weight", 1.0
),
step=0.001,
label="codeformer weight",
elem_id=f"{id_prefix}_face{unit_num}_face_restorer_weight",
)
upscaler_name = gr.Dropdown(
choices=[upscaler.name for upscaler in shared.sd_upscalers],
value=lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_upscaler", ""
),
label="Upscaler",
elem_id=f"{id_prefix}_face{unit_num}_upscaler",
)
improved_mask = gr.Checkbox(
lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_improved_mask", False
),
interactive=True,
label="Use improved segmented mask (use pastenet to mask only the face)",
elem_id=f"{id_prefix}_face{unit_num}_improved_mask",
)
color_corrections = gr.Checkbox(
lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_fixcolor", False
),
interactive=True,
label="Use color corrections",
elem_id=f"{id_prefix}_face{unit_num}_color_corrections",
)
sharpen_face = gr.Checkbox(
lambda: opts.data.get(
"faceswaplab_default_upscaled_swapper_sharpen", False
),
interactive=True,
label="sharpen face",
elem_id=f"{id_prefix}_face{unit_num}_sharpen_face",
)
erosion_factor = gr.Slider(
0.0,
10.0,
lambda: opts.data.get("faceswaplab_default_upscaled_swapper_erosion", 1.0),
step=0.01,
label="Upscaled swapper mask erosion factor, 1 = default behaviour.",
elem_id=f"{id_prefix}_face{unit_num}_erosion_factor",
)
return [
face_restorer_name,
face_restorer_visibility,
codeformer_weight,
upscaler_name,
improved_mask,
color_corrections,
sharpen_face,
erosion_factor,
]
def faceswap_unit_ui( def faceswap_unit_ui(
@ -61,35 +156,6 @@ def faceswap_unit_ui(
elem_id=f"{id_prefix}_face{unit_num}_blend_faces", elem_id=f"{id_prefix}_face{unit_num}_blend_faces",
interactive=True, interactive=True,
) )
gr.Markdown("""Discard images with low similarity or no faces :""")
with gr.Row():
check_similarity = gr.Checkbox(
False,
placeholder="discard",
label="Check similarity",
elem_id=f"{id_prefix}_face{unit_num}_check_similarity",
)
compute_similarity = gr.Checkbox(
False,
label="Compute similarity",
elem_id=f"{id_prefix}_face{unit_num}_compute_similarity",
)
min_sim = gr.Slider(
0,
1,
0,
step=0.01,
label="Min similarity",
elem_id=f"{id_prefix}_face{unit_num}_min_similarity",
)
min_ref_sim = gr.Slider(
0,
1,
0,
step=0.01,
label="Min reference similarity",
elem_id=f"{id_prefix}_face{unit_num}_min_ref_similarity",
)
gr.Markdown( gr.Markdown(
"""Select the face to be swapped, you can sort by size or use the same gender as the desired face:""" """Select the face to be swapped, you can sort by size or use the same gender as the desired face:"""
@ -142,22 +208,75 @@ def faceswap_unit_ui(
visible=is_img2img, visible=is_img2img,
elem_id=f"{id_prefix}_face{unit_num}_swap_in_generated", elem_id=f"{id_prefix}_face{unit_num}_swap_in_generated",
) )
with gr.Accordion("Similarity", open=False):
gr.Markdown("""Discard images with low similarity or no faces :""")
with gr.Row():
check_similarity = gr.Checkbox(
False,
placeholder="discard",
label="Check similarity",
elem_id=f"{id_prefix}_face{unit_num}_check_similarity",
)
compute_similarity = gr.Checkbox(
False,
label="Compute similarity",
elem_id=f"{id_prefix}_face{unit_num}_compute_similarity",
)
min_sim = gr.Slider(
0,
1,
0,
step=0.01,
label="Min similarity",
elem_id=f"{id_prefix}_face{unit_num}_min_similarity",
)
min_ref_sim = gr.Slider(
0,
1,
0,
step=0.01,
label="Min reference similarity",
elem_id=f"{id_prefix}_face{unit_num}_min_ref_similarity",
)
pre_inpainting = face_inpainting_ui(
name="Pre-Inpainting (Before swapping)",
id_prefix=f"{id_prefix}_face{unit_num}_preinpainting",
description="Pre-inpainting sends face to inpainting before swapping",
)
options = faceswap_unit_advanced_options(is_img2img, unit_num, id_prefix)
post_inpainting = face_inpainting_ui(
name="Post-Inpainting (After swapping)",
id_prefix=f"{id_prefix}_face{unit_num}_postinpainting",
description="Post-inpainting sends face to inpainting after swapping",
)
gradio_components: List[gr.components.Component] = (
[
img,
face,
batch_files,
blend_faces,
enable,
same_gender,
sort_by_size,
check_similarity,
compute_similarity,
min_sim,
min_ref_sim,
target_faces_index,
reference_faces_index,
swap_in_source,
swap_in_generated,
]
+ pre_inpainting
+ options
+ post_inpainting
)
# If changed, you need to change FaceSwapUnitSettings accordingly # If changed, you need to change FaceSwapUnitSettings accordingly
# ORDER of parameters is IMPORTANT. It should match the result of FaceSwapUnitSettings # ORDER of parameters is IMPORTANT. It should match the result of FaceSwapUnitSettings
return [ return gradio_components
img,
face,
batch_files,
blend_faces,
enable,
same_gender,
sort_by_size,
check_similarity,
compute_similarity,
min_sim,
min_ref_sim,
target_faces_index,
reference_faces_index,
swap_in_source,
swap_in_generated,
]

@ -0,0 +1,240 @@
import glob
import os
from typing import *
from insightface.app.common import Face
from safetensors.torch import save_file, safe_open
import torch
import modules.scripts as scripts
from modules import scripts
from scripts.faceswaplab_swapping.upcaled_inswapper_options import InswappperOptions
from scripts.faceswaplab_utils.faceswaplab_logging import logger
from scripts.faceswaplab_utils.typing import *
from scripts.faceswaplab_utils import imgutils
from scripts.faceswaplab_utils.models_utils import get_models
import traceback
import dill as pickle # will be removed in future versions
from scripts.faceswaplab_swapping import swapper
from pprint import pformat
import re
from client_api import api_utils
import tempfile
def sanitize_name(name: str) -> str:
"""
Sanitize the input name by removing special characters and replacing spaces with underscores.
Parameters:
name (str): The input name to be sanitized.
Returns:
str: The sanitized name with special characters removed and spaces replaced by underscores.
"""
name = re.sub("[^A-Za-z0-9_. ]+", "", name)
name = name.replace(" ", "_")
return name[:255]
def build_face_checkpoint_and_save(
images: List[PILImage], name: str, overwrite: bool = False, path: str = None
) -> PILImage:
"""
Builds a face checkpoint using the provided image files, performs face swapping,
and saves the result to a file. If a blended face is successfully obtained and the face swapping
process succeeds, the resulting image is returned. Otherwise, None is returned.
Args:
batch_files (list): List of image file paths used to create the face checkpoint.
name (str): The name assigned to the face checkpoint.
Returns:
PIL.PILImage or None: The resulting swapped face image if the process is successful; None otherwise.
"""
try:
name = sanitize_name(name)
images = images or []
logger.info("Build %s with %s images", name, len(images))
faces = swapper.get_faces_from_img_files(images)
blended_face = swapper.blend_faces(faces)
preview_path = os.path.join(
scripts.basedir(), "extensions", "sd-webui-faceswaplab", "references"
)
reference_preview_img: PILImage = None
if blended_face:
if blended_face["gender"] == 0:
reference_preview_img = Image.open(
os.path.join(preview_path, "woman.png")
)
else:
reference_preview_img = Image.open(
os.path.join(preview_path, "man.png")
)
if name == "":
name = "default_name"
logger.debug("Face %s", pformat(blended_face))
target_face = swapper.get_or_default(
swapper.get_faces(imgutils.pil_to_cv2(reference_preview_img)), 0, None
)
if target_face is None:
logger.error(
"Failed to open reference image, cannot create preview : That should not happen unless you deleted the references folder or change the detection threshold."
)
else:
result = swapper.swap_face(
reference_face=blended_face,
target_faces=[target_face],
source_face=blended_face,
target_img=reference_preview_img,
model=get_models()[0],
swapping_options=InswappperOptions(face_restorer_name="Codeformer"),
)
preview_image = result.image
if path:
file_path = path
else:
file_path = os.path.join(get_checkpoint_path(), f"{name}.safetensors")
if not overwrite:
file_number = 1
while os.path.exists(file_path):
file_path = os.path.join(
get_checkpoint_path(), f"{name}_{file_number}.safetensors"
)
file_number += 1
save_face(filename=file_path, face=blended_face)
preview_image.save(file_path + ".png")
try:
data = load_face(file_path)
logger.debug(data)
except Exception as e:
logger.error("Error loading checkpoint, after creation %s", e)
traceback.print_exc()
return preview_image
else:
logger.error("No face found")
return None
except Exception as e:
logger.error("Failed to build checkpoint %s", e)
traceback.print_exc()
return None
def save_face(face: Face, filename: str) -> None:
try:
tensors = {
"embedding": torch.tensor(face["embedding"]),
"gender": torch.tensor(face["gender"]),
"age": torch.tensor(face["age"]),
}
save_file(tensors, filename)
except Exception as e:
traceback.print_exc
logger.error("Failed to save checkpoint %s", e)
raise e
def load_face(name: str) -> Face:
if name.startswith("data:application/face;base64,"):
with tempfile.NamedTemporaryFile(delete=True) as temp_file:
api_utils.base64_to_safetensors(name, temp_file.name)
face = {}
with safe_open(temp_file.name, framework="pt", device="cpu") as f:
for k in f.keys():
logger.debug("load key %s", k)
face[k] = f.get_tensor(k).numpy()
return Face(face)
filename = matching_checkpoint(name)
if filename is None:
return None
if filename.endswith(".pkl"):
logger.warning(
"Pkl files for faces are deprecated to enhance safety, they will be unsupported in future versions."
)
logger.warning("The file will be converted to .safetensors")
logger.warning(
"You can also use this script https://gist.github.com/glucauze/4a3c458541f2278ad801f6625e5b9d3d"
)
with open(filename, "rb") as file:
logger.info("Load pkl")
face = Face(pickle.load(file))
logger.warning(
"Convert to safetensors, you can remove the pkl version once you have ensured that the safetensor is working"
)
save_face(face, filename.replace(".pkl", ".safetensors"))
return face
elif filename.endswith(".safetensors"):
face = {}
with safe_open(filename, framework="pt", device="cpu") as f:
for k in f.keys():
logger.debug("load key %s", k)
face[k] = f.get_tensor(k).numpy()
return Face(face)
raise NotImplementedError("Unknown file type, face extraction not implemented")
def get_checkpoint_path() -> str:
checkpoint_path = os.path.join(scripts.basedir(), "models", "faceswaplab", "faces")
os.makedirs(checkpoint_path, exist_ok=True)
return checkpoint_path
def matching_checkpoint(name: str) -> Optional[str]:
"""
Retrieve the full path of a checkpoint file matching the given name.
If the name already includes a path separator, it is returned as-is. Otherwise, the function looks for a matching
file with the extensions ".safetensors" or ".pkl" in the checkpoint directory.
Args:
name (str): The name or path of the checkpoint file.
Returns:
Optional[str]: The full path of the matching checkpoint file, or None if no match is found.
"""
# If the name already includes a path separator, return it as is
if os.path.sep in name:
return name
# If the name doesn't end with the specified extensions, look for a matching file
if not (name.endswith(".safetensors") or name.endswith(".pkl")):
# Try appending each extension and check if the file exists in the checkpoint path
for ext in [".safetensors", ".pkl"]:
full_path = os.path.join(get_checkpoint_path(), name + ext)
if os.path.exists(full_path):
return full_path
# If no matching file is found, return None
return None
# If the name already ends with the specified extensions, simply complete the path
return os.path.join(get_checkpoint_path(), name)
def get_face_checkpoints() -> List[str]:
"""
Retrieve a list of face checkpoint paths.
This function searches for face files with the extension ".safetensors" in the specified directory and returns a list
containing the paths of those files.
Returns:
list: A list of face paths, including the string "None" as the first element.
"""
faces_path = os.path.join(get_checkpoint_path(), "*.safetensors")
faces = glob.glob(faces_path)
faces_path = os.path.join(get_checkpoint_path(), "*.pkl")
faces += glob.glob(faces_path)
return ["None"] + [os.path.basename(face) for face in sorted(faces)]

@ -1,72 +0,0 @@
import glob
import os
from typing import List
from insightface.app.common import Face
from safetensors.torch import save_file, safe_open
import torch
import modules.scripts as scripts
from modules import scripts
from scripts.faceswaplab_utils.faceswaplab_logging import logger
import dill as pickle # will be removed in future versions
def save_face(face: Face, filename: str) -> None:
tensors = {
"embedding": torch.tensor(face["embedding"]),
"gender": torch.tensor(face["gender"]),
"age": torch.tensor(face["age"]),
}
save_file(tensors, filename)
def load_face(filename: str) -> Face:
if filename.endswith(".pkl"):
logger.warning(
"Pkl files for faces are deprecated to enhance safety, they will be unsupported in future versions."
)
logger.warning("The file will be converted to .safetensors")
logger.warning(
"You can also use this script https://gist.github.com/glucauze/4a3c458541f2278ad801f6625e5b9d3d"
)
with open(filename, "rb") as file:
logger.info("Load pkl")
face = Face(pickle.load(file))
logger.warning(
"Convert to safetensors, you can remove the pkl version once you have ensured that the safetensor is working"
)
save_face(face, filename.replace(".pkl", ".safetensors"))
return face
elif filename.endswith(".safetensors"):
face = {}
with safe_open(filename, framework="pt", device="cpu") as f:
for k in f.keys():
logger.debug("load key %s", k)
face[k] = f.get_tensor(k).numpy()
return Face(face)
raise NotImplementedError("Unknown file type, face extraction not implemented")
def get_face_checkpoints() -> List[str]:
"""
Retrieve a list of face checkpoint paths.
This function searches for face files with the extension ".safetensors" in the specified directory and returns a list
containing the paths of those files.
Returns:
list: A list of face paths, including the string "None" as the first element.
"""
faces_path = os.path.join(
scripts.basedir(), "models", "faceswaplab", "faces", "*.safetensors"
)
faces = glob.glob(faces_path)
faces_path = os.path.join(
scripts.basedir(), "models", "faceswaplab", "faces", "*.pkl"
)
faces += glob.glob(faces_path)
return ["None"] + sorted(faces)

@ -1,5 +1,5 @@
import io import io
from typing import List, Optional, Tuple, Union, Dict from typing import List, Optional, Union, Dict
from PIL import Image from PIL import Image
import cv2 import cv2
import numpy as np import numpy as np
@ -10,14 +10,16 @@ from scripts.faceswaplab_globals import NSFW_SCORE_THRESHOLD
from modules import processing from modules import processing
import base64 import base64
from collections import Counter from collections import Counter
from scripts.faceswaplab_utils.typing import BoxCoords, CV2ImgU8, PILImage
from scripts.faceswaplab_utils.faceswaplab_logging import logger
def check_against_nsfw(img: Image.Image) -> bool: def check_against_nsfw(img: PILImage) -> bool:
""" """
Check if an image exceeds the Not Safe for Work (NSFW) score. Check if an image exceeds the Not Safe for Work (NSFW) score.
Parameters: Parameters:
img (PIL.Image.Image): The image to be checked. img (PILImage): The image to be checked.
Returns: Returns:
bool: True if any part of the image is considered NSFW, False otherwise. bool: True if any part of the image is considered NSFW, False otherwise.
@ -32,33 +34,33 @@ def check_against_nsfw(img: Image.Image) -> bool:
return any(shapes) return any(shapes)
def pil_to_cv2(pil_img: Image.Image) -> np.ndarray: # type: ignore def pil_to_cv2(pil_img: PILImage) -> CV2ImgU8: # type: ignore
""" """
Convert a PIL Image into an OpenCV image (cv2). Convert a PIL Image into an OpenCV image (cv2).
Args: Args:
pil_img (PIL.Image.Image): An image in PIL format. pil_img (PILImage): An image in PIL format.
Returns: Returns:
np.ndarray: The input image converted to OpenCV format (BGR). CV2ImgU8: The input image converted to OpenCV format (BGR).
""" """
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
def cv2_to_pil(cv2_img: np.ndarray) -> Image.Image: # type: ignore def cv2_to_pil(cv2_img: CV2ImgU8) -> PILImage: # type: ignore
""" """
Convert an OpenCV image (cv2) into a PIL Image. Convert an OpenCV image (cv2) into a PIL Image.
Args: Args:
cv2_img (np.ndarray): An image in OpenCV format (BGR). cv2_img (CV2ImgU8): An image in OpenCV format (BGR).
Returns: Returns:
PIL.Image.Image: The input image converted to PIL format (RGB). PILImage: The input image converted to PIL format (RGB).
""" """
return Image.fromarray(cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB)) return Image.fromarray(cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB))
def torch_to_pil(images: torch.Tensor) -> List[Image.Image]: def torch_to_pil(tensor: torch.Tensor) -> List[PILImage]:
""" """
Converts a tensor image or a batch of tensor images to a PIL image or a list of PIL images. Converts a tensor image or a batch of tensor images to a PIL image or a list of PIL images.
@ -72,7 +74,7 @@ def torch_to_pil(images: torch.Tensor) -> List[Image.Image]:
list list
A list of PIL images. A list of PIL images.
""" """
images = images.cpu().permute(0, 2, 3, 1).numpy() images: CV2ImgU8 = tensor.cpu().permute(0, 2, 3, 1).numpy()
if images.ndim == 3: if images.ndim == 3:
images = images[None, ...] images = images[None, ...]
images = (images * 255).round().astype("uint8") images = (images * 255).round().astype("uint8")
@ -80,13 +82,13 @@ def torch_to_pil(images: torch.Tensor) -> List[Image.Image]:
return pil_images return pil_images
def pil_to_torch(pil_images: Union[Image.Image, List[Image.Image]]) -> torch.Tensor: def pil_to_torch(pil_images: Union[PILImage, List[PILImage]]) -> torch.Tensor:
""" """
Converts a PIL image or a list of PIL images to a torch tensor or a batch of torch tensors. Converts a PIL image or a list of PIL images to a torch tensor or a batch of torch tensors.
Parameters Parameters
---------- ----------
pil_images : Union[Image.Image, List[Image.Image]] pil_images : Union[PILImage, List[PILImage]]
A PIL image or a list of PIL images. A PIL image or a list of PIL images.
Returns Returns
@ -104,7 +106,7 @@ def pil_to_torch(pil_images: Union[Image.Image, List[Image.Image]]) -> torch.Ten
return torch_image return torch_image
def create_square_image(image_list: List[Image.Image]) -> Optional[Image.Image]: def create_square_image(image_list: List[PILImage]) -> Optional[PILImage]:
""" """
Creates a square image by combining multiple images in a grid pattern. Creates a square image by combining multiple images in a grid pattern.
@ -156,33 +158,21 @@ def create_square_image(image_list: List[Image.Image]) -> Optional[Image.Image]:
return None return None
# def create_mask(image : Image.Image, box_coords : Tuple[int, int, int, int]) -> Image.Image:
# width, height = image.size
# mask = Image.new("L", (width, height), 255)
# x1, y1, x2, y2 = box_coords
# for x in range(width):
# for y in range(height):
# if x1 <= x <= x2 and y1 <= y <= y2:
# mask.putpixel((x, y), 255)
# else:
# mask.putpixel((x, y), 0)
# return mask
def create_mask( def create_mask(
image: Image.Image, box_coords: Tuple[int, int, int, int] image: PILImage,
) -> Image.Image: box_coords: BoxCoords,
) -> PILImage:
""" """
Create a binary mask for a given image and bounding box coordinates. Create a binary mask for a given image and bounding box coordinates.
Args: Args:
image (PIL.Image.Image): The input image. image (PILImage): The input image.
box_coords (Tuple[int, int, int, int]): A tuple of 4 integers defining the bounding box. box_coords (Tuple[int, int, int, int]): A tuple of 4 integers defining the bounding box.
It follows the pattern (x1, y1, x2, y2), where (x1, y1) is the top-left coordinate of the It follows the pattern (x1, y1, x2, y2), where (x1, y1) is the top-left coordinate of the
box and (x2, y2) is the bottom-right coordinate of the box. box and (x2, y2) is the bottom-right coordinate of the box.
Returns: Returns:
PIL.Image.Image: A binary mask of the same size as the input image, where pixels within PILImage: A binary mask of the same size as the input image, where pixels within
the bounding box are white (255) and pixels outside the bounding box are black (0). the bounding box are white (255) and pixels outside the bounding box are black (0).
""" """
width, height = image.size width, height = image.size
@ -195,8 +185,8 @@ def create_mask(
def apply_mask( def apply_mask(
img: Image.Image, p: processing.StableDiffusionProcessing, batch_index: int img: PILImage, p: processing.StableDiffusionProcessing, batch_index: int
) -> Image.Image: ) -> PILImage:
""" """
Apply mask overlay and color correction to an image if enabled Apply mask overlay and color correction to an image if enabled
@ -213,8 +203,10 @@ def apply_mask(
overlays = p.overlay_images overlays = p.overlay_images
if overlays is None or batch_index >= len(overlays): if overlays is None or batch_index >= len(overlays):
return img return img
overlay: Image.Image = overlays[batch_index] overlay: PILImage = overlays[batch_index]
overlay = overlay.resize((img.size), resample=Image.Resampling.LANCZOS) logger.debug("Overlay size %s, Image size %s", overlay.size, img.size)
if overlay.size != img.size:
overlay = overlay.resize((img.size), resample=Image.Resampling.LANCZOS)
img = img.copy() img = img.copy()
img.paste(overlay, (0, 0), overlay) img.paste(overlay, (0, 0), overlay)
return img return img
@ -227,9 +219,7 @@ def apply_mask(
return img return img
def prepare_mask( def prepare_mask(mask: PILImage, p: processing.StableDiffusionProcessing) -> PILImage:
mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
""" """
Prepare an image mask for the inpainting process. (This comes from controlnet) Prepare an image mask for the inpainting process. (This comes from controlnet)
@ -243,12 +233,12 @@ def prepare_mask(
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'. apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
Args: Args:
mask (Image.Image): The input mask as a PIL Image object. mask (PILImage): The input mask as a PIL Image object.
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
containing the processing parameters. containing the processing parameters.
Returns: Returns:
mask (Image.Image): The prepared mask as a PIL Image object. mask (PILImage): The prepared mask as a PIL Image object.
""" """
mask = mask.convert("L") mask = mask.convert("L")
# FIXME : Properly fix blur # FIXME : Properly fix blur
@ -257,7 +247,7 @@ def prepare_mask(
return mask return mask
def base64_to_pil(base64str: Optional[str]) -> Optional[Image.Image]: def base64_to_pil(base64str: Optional[str]) -> Optional[PILImage]:
""" """
Converts a base64 string to a PIL Image object. Converts a base64 string to a PIL Image object.
@ -267,7 +257,7 @@ def base64_to_pil(base64str: Optional[str]) -> Optional[Image.Image]:
will return None. will return None.
Returns: Returns:
Optional[Image.Image]: A PIL Image object created from the base64 string. If the input is None, Optional[PILImage]: A PIL Image object created from the base64 string. If the input is None,
the function returns None. the function returns None.
Raises: Raises:

@ -0,0 +1,10 @@
from typing import Tuple
from numpy import uint8
from numpy.typing import NDArray
from insightface.app.common import Face as IFace
from PIL import Image
PILImage = Image.Image
CV2ImgU8 = NDArray[uint8]
Face = IFace
BoxCoords = Tuple[int, int, int, int]

@ -0,0 +1,39 @@
from dataclasses import fields, is_dataclass
from typing import *
def dataclass_from_flat_list(cls: type, values: Tuple[Any, ...]) -> Any:
if not is_dataclass(cls):
raise TypeError(f"{cls} is not a dataclass")
idx = 0
init_values = {}
for field in fields(cls):
if is_dataclass(field.type):
inner_values = [values[idx + i] for i in range(len(fields(field.type)))]
init_values[field.name] = field.type(*inner_values)
idx += len(inner_values)
else:
value = values[idx]
init_values[field.name] = value
idx += 1
return cls(**init_values)
def dataclasses_from_flat_list(
classes_mapping: List[type], values: Tuple[Any, ...]
) -> List[Any]:
instances = []
idx = 0
for cls in classes_mapping:
num_fields = sum(
len(fields(field.type)) if is_dataclass(field.type) else 1
for field in fields(cls)
)
instance = dataclass_from_flat_list(cls, values[idx : idx + num_fields])
instances.append(instance)
idx += num_fields
assert [
isinstance(i, t) for i, t in zip(instances, classes_mapping)
], "Instances should match types"
return instances

@ -2,21 +2,28 @@ from typing import List
import pytest import pytest
import requests import requests
import sys import sys
import tempfile
import safetensors
sys.path.append(".") sys.path.append(".")
import requests
from client_api.api_utils import ( from client_api.api_utils import (
FaceSwapUnit, FaceSwapUnit,
FaceSwapResponse, InswappperOptions,
PostProcessingOptions,
FaceSwapRequest,
base64_to_pil,
pil_to_base64, pil_to_base64,
PostProcessingOptions,
InpaintingWhen, InpaintingWhen,
FaceSwapCompareRequest, InpaintingOptions,
FaceSwapRequest,
FaceSwapResponse,
FaceSwapExtractRequest, FaceSwapExtractRequest,
FaceSwapCompareRequest,
FaceSwapExtractResponse, FaceSwapExtractResponse,
compare_faces, compare_faces,
base64_to_pil,
base64_to_safetensors,
safetensors_to_base64,
) )
from PIL import Image from PIL import Image
@ -36,6 +43,13 @@ def face_swap_request() -> FaceSwapRequest:
source_img=pil_to_base64("references/woman.png"), # The face you want to use source_img=pil_to_base64("references/woman.png"), # The face you want to use
same_gender=True, same_gender=True,
faces_index=(0,), # Replace first woman since same gender is on faces_index=(0,), # Replace first woman since same gender is on
swapping_options=InswappperOptions(
face_restorer_name="CodeFormer",
upscaler_name="LDSR",
improved_mask=True,
sharpen=True,
color_corrections=True,
),
) )
# Post-processing config # Post-processing config
@ -45,11 +59,12 @@ def face_swap_request() -> FaceSwapRequest:
restorer_visibility=1, restorer_visibility=1,
upscaler_name="Lanczos", upscaler_name="Lanczos",
scale=4, scale=4,
inpainting_steps=30,
inpainting_denoising_strengh=0.1,
inpainting_when=InpaintingWhen.BEFORE_RESTORE_FACE, inpainting_when=InpaintingWhen.BEFORE_RESTORE_FACE,
inpainting_options=InpaintingOptions(
inpainting_steps=30,
inpainting_denoising_strengh=0.1,
),
) )
# Prepare the request # Prepare the request
request = FaceSwapRequest( request = FaceSwapRequest(
image=pil_to_base64("tests/test_image.png"), image=pil_to_base64("tests/test_image.png"),
@ -149,3 +164,114 @@ def test_faceswap(face_swap_request: FaceSwapRequest) -> None:
assert response.status_code == 200 assert response.status_code == 200
similarity = float(response.text) similarity = float(response.text)
assert similarity > 0.50 assert similarity > 0.50
def test_faceswap_inpainting(face_swap_request: FaceSwapRequest) -> None:
face_swap_request.units[0].pre_inpainting = InpaintingOptions(
inpainting_denoising_strengh=0.4,
inpainting_prompt="Photo of a funny man",
inpainting_negative_prompt="blurry, bad art",
inpainting_steps=100,
)
face_swap_request.units[0].post_inpainting = InpaintingOptions(
inpainting_denoising_strengh=0.4,
inpainting_prompt="Photo of a funny man",
inpainting_negative_prompt="blurry, bad art",
inpainting_steps=20,
inpainting_sampler="Euler a",
)
response = requests.post(
f"{base_url}/faceswaplab/swap_face",
data=face_swap_request.json(),
headers={"Content-Type": "application/json; charset=utf-8"},
)
assert response.status_code == 200
data = response.json()
assert "images" in data
assert "infos" in data
def test_faceswap_checkpoint_building() -> None:
source_images: List[str] = [
pil_to_base64("references/man.png"),
pil_to_base64("references/woman.png"),
]
response = requests.post(
url=f"{base_url}/faceswaplab/build",
json=source_images,
headers={"Content-Type": "application/json; charset=utf-8"},
)
assert response.status_code == 200
with tempfile.NamedTemporaryFile(delete=True) as temp_file:
base64_to_safetensors(response.json(), output_path=temp_file.name)
with safetensors.safe_open(temp_file.name, framework="pt") as f:
assert "age" in f.keys()
assert "gender" in f.keys()
assert "embedding" in f.keys()
def test_faceswap_checkpoint_building_and_using() -> None:
source_images: List[str] = [
pil_to_base64("references/man.png"),
]
response = requests.post(
url=f"{base_url}/faceswaplab/build",
json=source_images,
headers={"Content-Type": "application/json; charset=utf-8"},
)
assert response.status_code == 200
with tempfile.NamedTemporaryFile(delete=True) as temp_file:
base64_to_safetensors(response.json(), output_path=temp_file.name)
with safetensors.safe_open(temp_file.name, framework="pt") as f:
assert "age" in f.keys()
assert "gender" in f.keys()
assert "embedding" in f.keys()
# First face unit :
unit1 = FaceSwapUnit(
source_face=safetensors_to_base64(
temp_file.name
), # convert the checkpoint to base64
faces_index=(0,), # Replace first face
swapping_options=InswappperOptions(
face_restorer_name="CodeFormer",
upscaler_name="LDSR",
improved_mask=True,
sharpen=True,
color_corrections=True,
),
)
# Prepare the request
request = FaceSwapRequest(
image=pil_to_base64("tests/test_image.png"), units=[unit1]
)
# Face Swap
response = requests.post(
url=f"{base_url}/faceswaplab/swap_face",
data=request.json(),
headers={"Content-Type": "application/json; charset=utf-8"},
)
assert response.status_code == 200
fsr = FaceSwapResponse.parse_obj(response.json())
data = response.json()
assert "images" in data
assert "infos" in data
# First face is the man
assert (
compare_faces(
fsr.pil_images[0], Image.open("references/man.png"), base_url=base_url
)
> 0.5
)

Loading…
Cancel
Save