improve tests

main
Tran Xen 2 years ago
parent 15e9366eb6
commit 750c9be713

@ -1,3 +1,5 @@
# Keep a copy of this file here, it is used by the server side api
from typing import List, Tuple from typing import List, Tuple
from PIL import Image from PIL import Image
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
@ -156,6 +158,19 @@ class FaceSwapResponse(BaseModel):
return [base64_to_pil(img) for img in self.images] return [base64_to_pil(img) for img in self.images]
class FaceSwapCompareRequest(BaseModel):
image1: str = Field(
description="base64 reference image",
examples=["...."],
default=None,
)
image2: str = Field(
description="base64 reference image",
examples=["...."],
default=None,
)
def pil_to_base64(img: Image.Image) -> np.array: # type:ignore def pil_to_base64(img: Image.Image) -> np.array: # type:ignore
if isinstance(img, str): if isinstance(img, str):
img = Image.open(img) img = Image.open(img)

@ -1,11 +1,12 @@
import requests import requests
from client_utils import ( from api_utils import (
FaceSwapRequest, FaceSwapRequest,
FaceSwapUnit, FaceSwapUnit,
PostProcessingOptions, PostProcessingOptions,
FaceSwapResponse, FaceSwapResponse,
pil_to_base64, pil_to_base64,
InpaintingWhen, InpaintingWhen,
FaceSwapCompareRequest,
) )
address = "http://127.0.0.1:7860" address = "http://127.0.0.1:7860"
@ -48,6 +49,19 @@ result = requests.post(
) )
response = FaceSwapResponse.parse_obj(result.json()) response = FaceSwapResponse.parse_obj(result.json())
print(response.json())
for img in response.pil_images: for img in response.pil_images:
img.show() img.show()
request = FaceSwapCompareRequest(
image1=pil_to_base64("../references/man.png"),
image2=pil_to_base64(response.pil_images[0]),
)
result = requests.post(
url=f"{address}/faceswaplab/compare",
data=request.json(),
headers={"Content-Type": "application/json; charset=utf-8"},
)
print("similarity", result.text)

@ -2,7 +2,7 @@ from PIL import Image
import numpy as np import numpy as np
from fastapi import FastAPI from fastapi import FastAPI
from modules.api import api from modules.api import api
from scripts.faceswaplab_api.faceswaplab_api_types import ( from client_api.api_utils import (
FaceSwapResponse, FaceSwapResponse,
) )
from scripts.faceswaplab_globals import VERSION_FLAG from scripts.faceswaplab_globals import VERSION_FLAG
@ -16,7 +16,7 @@ from scripts.faceswaplab_utils.imgutils import (
from scripts.faceswaplab_postprocessing.postprocessing_options import ( from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
) )
from scripts.faceswaplab_api import faceswaplab_api_types from client_api import api_utils
from scripts.faceswaplab_postprocessing.postprocessing_options import InpaintingWhen from scripts.faceswaplab_postprocessing.postprocessing_options import InpaintingWhen
@ -59,7 +59,7 @@ def encode_np_to_base64(image: np.ndarray) -> str: # type: ignore
def get_postprocessing_options( def get_postprocessing_options(
options: faceswaplab_api_types.PostProcessingOptions, options: api_utils.PostProcessingOptions,
) -> PostProcessingOptions: ) -> PostProcessingOptions:
pp_options = PostProcessingOptions( pp_options = PostProcessingOptions(
face_restorer_name=options.face_restorer_name, face_restorer_name=options.face_restorer_name,
@ -73,7 +73,9 @@ def get_postprocessing_options(
inpainting_negative_prompt=options.inpainting_negative_prompt, inpainting_negative_prompt=options.inpainting_negative_prompt,
inpainting_steps=options.inpainting_steps, inpainting_steps=options.inpainting_steps,
inpainting_sampler=options.inpainting_sampler, inpainting_sampler=options.inpainting_sampler,
inpainting_when=options.inpainting_when, # hacky way to prevent having a separate file for Inpainting when (2 classes)
# therfore a conversion is required from api IW to server side IW
inpainting_when=InpaintingWhen(options.inpainting_when.value),
inpainting_model=options.inpainting_model, inpainting_model=options.inpainting_model,
) )
@ -85,7 +87,7 @@ def get_postprocessing_options(
def get_faceswap_units_settings( def get_faceswap_units_settings(
api_units: List[faceswaplab_api_types.FaceSwapUnit], api_units: List[api_utils.FaceSwapUnit],
) -> List[FaceSwapUnitSettings]: ) -> List[FaceSwapUnitSettings]:
units = [] units = []
for u in api_units: for u in api_units:
@ -127,8 +129,8 @@ def faceswaplab_api(_: gr.Blocks, app: FastAPI) -> None:
description="Swap a face in an image using units", description="Swap a face in an image using units",
) )
async def swap_face( async def swap_face(
request: faceswaplab_api_types.FaceSwapRequest, request: api_utils.FaceSwapRequest,
) -> faceswaplab_api_types.FaceSwapResponse: ) -> api_utils.FaceSwapResponse:
units: List[FaceSwapUnitSettings] = [] units: List[FaceSwapUnitSettings] = []
src_image: Optional[Image.Image] = base64_to_pil(request.image) src_image: Optional[Image.Image] = base64_to_pil(request.image)
response = FaceSwapResponse(images=[], infos=[]) response = FaceSwapResponse(images=[], infos=[])
@ -147,3 +149,15 @@ def faceswaplab_api(_: gr.Blocks, app: FastAPI) -> None:
response.infos = [] # Not used atm response.infos = [] # Not used atm
return response return response
@app.post(
"/faceswaplab/compare",
tags=["faceswaplab"],
description="Compare first face of each images",
)
async def compare(
request: api_utils.FaceSwapCompareRequest,
) -> float:
return swapper.compare_faces(
base64_to_pil(request.image1), base64_to_pil(request.image2)
)

@ -1,144 +0,0 @@
from typing import List, Optional, Tuple
from PIL import Image
from scripts.faceswaplab_utils.imgutils import (
base64_to_pil,
)
from pydantic import BaseModel, Field
from scripts.faceswaplab_postprocessing.postprocessing_options import InpaintingWhen
class FaceSwapUnit(BaseModel):
# The image given in reference
source_img: str = Field(
description="base64 reference image",
examples=["...."],
default=None,
)
# The checkpoint file
source_face: str = Field(
description="face checkpoint (from models/faceswaplab/faces)",
examples=["my_face.pkl"],
default=None,
)
# base64 batch source images
batch_images: Tuple[str] = Field(
description="list of base64 batch source images",
examples=[
"....",
"....",
],
default=None,
)
# Will blend faces if True
blend_faces: bool = Field(description="Will blend faces if True", default=True)
# Use same gender filtering
same_gender: bool = Field(description="Use same gender filtering", default=False)
# Use same gender filtering
sort_by_size: bool = Field(description="Sort Faces by size", default=False)
# If True, discard images with low similarity
check_similarity: bool = Field(
description="If True, discard images with low similarity", default=False
)
# if True will compute similarity and add it to the image info
compute_similarity: bool = Field(
description="If True will compute similarity and add it to the image info",
default=False,
)
# Minimum similarity against the used face (reference, batch or checkpoint)
min_sim: float = Field(
description="Minimum similarity against the used face (reference, batch or checkpoint)",
default=0.0,
)
# Minimum similarity against the reference (reference or checkpoint if checkpoint is given)
min_ref_sim: float = Field(
description="Minimum similarity against the reference (reference or checkpoint if checkpoint is given)",
default=0.0,
)
# The face index to use for swapping
faces_index: Tuple[int] = Field(
description="The face index to use for swapping, list of face numbers starting from 0",
default=(0,),
)
reference_face_index: int = Field(
description="The face index to use to extract face from reference",
default=0,
)
def get_batch_images(self) -> List[Image.Image]:
images = []
if self.batch_images:
for img in self.batch_images:
images.append(base64_to_pil(img))
return images
class PostProcessingOptions(BaseModel):
face_restorer_name: str = Field(description="face restorer name", default=None)
restorer_visibility: float = Field(
description="face restorer visibility", default=1, le=1, ge=0
)
codeformer_weight: float = Field(
description="face restorer codeformer weight", default=1, le=1, ge=0
)
upscaler_name: str = Field(description="upscaler name", default=None)
scale: float = Field(description="upscaling scale", default=1, le=10, ge=0)
upscaler_visibility: float = Field(
description="upscaler visibility", default=1, le=1, ge=0
)
inpainting_denoising_strengh: float = Field(
description="Inpainting denoising strenght", default=0, lt=1, ge=0
)
inpainting_prompt: str = Field(
description="Inpainting denoising strenght",
examples=["Portrait of a [gender]"],
default="Portrait of a [gender]",
)
inpainting_negative_prompt: str = Field(
description="Inpainting denoising strenght",
examples=[
"Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation"
],
default="",
)
inpainting_steps: int = Field(
description="Inpainting steps",
examples=["Portrait of a [gender]"],
ge=1,
le=150,
default=20,
)
inpainting_sampler: str = Field(
description="Inpainting sampler", examples=["Euler"], default="Euler"
)
inpainting_when: InpaintingWhen = Field(
description="When inpainting happens",
examples=[e.value for e in InpaintingWhen.__members__.values()],
default=InpaintingWhen.NEVER,
)
inpainting_model: str = Field(
description="Inpainting model", examples=["Current"], default="Current"
)
class FaceSwapRequest(BaseModel):
image: str = Field(
description="base64 reference image",
examples=["...."],
default=None,
)
units: List[FaceSwapUnit]
postprocessing: Optional[PostProcessingOptions]
class FaceSwapResponse(BaseModel):
images: List[str] = Field(description="base64 swapped image", default=None)
infos: List[str]

@ -27,6 +27,7 @@ from scripts.faceswaplab_postprocessing.postprocessing_options import (
PostProcessingOptions, PostProcessingOptions,
) )
from scripts.faceswaplab_utils.models_utils import get_current_model from scripts.faceswaplab_utils.models_utils import get_current_model
import gradio as gr
providers = ["CPUExecutionProvider"] providers = ["CPUExecutionProvider"]
@ -91,6 +92,21 @@ def batch_process(
units: List[FaceSwapUnitSettings], units: List[FaceSwapUnitSettings],
postprocess_options: PostProcessingOptions, postprocess_options: PostProcessingOptions,
) -> Optional[List[Image.Image]]: ) -> Optional[List[Image.Image]]:
"""
Process a batch of images, apply face swapping according to the given settings, and optionally save the resulting images to a specified path.
Args:
src_images (List[Image.Image]): List of source PIL Images to process.
save_path (Optional[str]): Destination path where the processed images will be saved. If None, no images are saved.
units (List[FaceSwapUnitSettings]): List of FaceSwapUnitSettings to apply to the images.
postprocess_options (PostProcessingOptions): Post-processing settings to be applied to the images.
Returns:
Optional[List[Image.Image]]: List of processed images, or None in case of an exception.
Raises:
Any exceptions raised by the underlying process will be logged and the function will return None.
"""
try: try:
if save_path: if save_path:
os.makedirs(save_path, exist_ok=True) os.makedirs(save_path, exist_ok=True)
@ -281,9 +297,6 @@ def get_or_default(l: List[Any], index: int, default: Any) -> Any:
return l[index] if index < len(l) else default return l[index] if index < len(l) else default
import gradio as gr
def get_faces_from_img_files(files: List[gr.File]) -> List[Optional[np.ndarray]]: # type: ignore def get_faces_from_img_files(files: List[gr.File]) -> List[Optional[np.ndarray]]: # type: ignore
""" """
Extracts faces from a list of image files. Extracts faces from a list of image files.
@ -536,6 +549,25 @@ def process_images_units(
upscaled_swapper: bool = False, upscaled_swapper: bool = False,
force_blend: bool = False, force_blend: bool = False,
) -> Optional[List[Tuple[Image.Image, str]]]: ) -> Optional[List[Tuple[Image.Image, str]]]:
"""
Process a list of images using a specified model and unit settings for face swapping.
Args:
model (str): The name of the model to use for processing.
units (List[FaceSwapUnitSettings]): A list of settings for face swap units to apply on each image.
images (List[Tuple[Optional[Image.Image], Optional[str]]]): A list of tuples, each containing
an image and its associated info string. If an image or info string is not available,
its value can be None.
upscaled_swapper (bool, optional): If True, uses an upscaled version of the face swapper.
Defaults to False.
force_blend (bool, optional): If True, forces the blending of the swapped face on the original
image. Defaults to False.
Returns:
Optional[List[Tuple[Image.Image, str]]]: A list of tuples, each containing a processed image
and its associated info string. If no units are provided for processing, returns None.
"""
if len(units) == 0: if len(units) == 0:
logger.info("Finished processing image, return %s images", len(images)) logger.info("Finished processing image, return %s images", len(images))
return None return None

@ -5,7 +5,7 @@ import sys
sys.path.append(".") sys.path.append(".")
from client_api.client_utils import ( from client_api.api_utils import (
FaceSwapUnit, FaceSwapUnit,
FaceSwapResponse, FaceSwapResponse,
PostProcessingOptions, PostProcessingOptions,
@ -13,6 +13,7 @@ from client_api.client_utils import (
base64_to_pil, base64_to_pil,
pil_to_base64, pil_to_base64,
InpaintingWhen, InpaintingWhen,
FaceSwapCompareRequest,
) )
from PIL import Image from PIL import Image
@ -62,6 +63,22 @@ def test_version() -> None:
assert "version" in response.json() assert "version" in response.json()
def test_compare() -> None:
request = FaceSwapCompareRequest(
image1=pil_to_base64("references/man.png"),
image2=pil_to_base64("references/man.png"),
)
response = requests.post(
url=f"{base_url}/faceswaplab/compare",
data=request.json(),
headers={"Content-Type": "application/json; charset=utf-8"},
)
assert response.status_code == 200
similarity = float(response.text)
assert similarity > 0.90
def test_faceswap(face_swap_request: FaceSwapRequest) -> None: def test_faceswap(face_swap_request: FaceSwapRequest) -> None:
response = requests.post( response = requests.post(
f"{base_url}/faceswaplab/swap_face", f"{base_url}/faceswaplab/swap_face",
@ -81,3 +98,19 @@ def test_faceswap(face_swap_request: FaceSwapRequest) -> None:
orig_image = base64_to_pil(face_swap_request.image) orig_image = base64_to_pil(face_swap_request.image)
assert image.width == orig_image.width * face_swap_request.postprocessing.scale assert image.width == orig_image.width * face_swap_request.postprocessing.scale
assert image.height == orig_image.height * face_swap_request.postprocessing.scale assert image.height == orig_image.height * face_swap_request.postprocessing.scale
# Compare the result and ensure similarity for the man (first face)
request = FaceSwapCompareRequest(
image1=pil_to_base64("references/man.png"),
image2=res.images[0],
)
response = requests.post(
url=f"{base_url}/faceswaplab/compare",
data=request.json(),
headers={"Content-Type": "application/json; charset=utf-8"},
)
assert response.status_code == 200
similarity = float(response.text)
assert similarity > 0.50

Loading…
Cancel
Save