improve tests
parent
15e9366eb6
commit
750c9be713
@ -1,144 +0,0 @@
|
|||||||
from typing import List, Optional, Tuple
|
|
||||||
from PIL import Image
|
|
||||||
from scripts.faceswaplab_utils.imgutils import (
|
|
||||||
base64_to_pil,
|
|
||||||
)
|
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
from scripts.faceswaplab_postprocessing.postprocessing_options import InpaintingWhen
|
|
||||||
|
|
||||||
|
|
||||||
class FaceSwapUnit(BaseModel):
|
|
||||||
# The image given in reference
|
|
||||||
source_img: str = Field(
|
|
||||||
description="base64 reference image",
|
|
||||||
examples=["...."],
|
|
||||||
default=None,
|
|
||||||
)
|
|
||||||
# The checkpoint file
|
|
||||||
source_face: str = Field(
|
|
||||||
description="face checkpoint (from models/faceswaplab/faces)",
|
|
||||||
examples=["my_face.pkl"],
|
|
||||||
default=None,
|
|
||||||
)
|
|
||||||
# base64 batch source images
|
|
||||||
batch_images: Tuple[str] = Field(
|
|
||||||
description="list of base64 batch source images",
|
|
||||||
examples=[
|
|
||||||
"....",
|
|
||||||
"....",
|
|
||||||
],
|
|
||||||
default=None,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Will blend faces if True
|
|
||||||
blend_faces: bool = Field(description="Will blend faces if True", default=True)
|
|
||||||
|
|
||||||
# Use same gender filtering
|
|
||||||
same_gender: bool = Field(description="Use same gender filtering", default=False)
|
|
||||||
|
|
||||||
# Use same gender filtering
|
|
||||||
sort_by_size: bool = Field(description="Sort Faces by size", default=False)
|
|
||||||
|
|
||||||
# If True, discard images with low similarity
|
|
||||||
check_similarity: bool = Field(
|
|
||||||
description="If True, discard images with low similarity", default=False
|
|
||||||
)
|
|
||||||
# if True will compute similarity and add it to the image info
|
|
||||||
compute_similarity: bool = Field(
|
|
||||||
description="If True will compute similarity and add it to the image info",
|
|
||||||
default=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Minimum similarity against the used face (reference, batch or checkpoint)
|
|
||||||
min_sim: float = Field(
|
|
||||||
description="Minimum similarity against the used face (reference, batch or checkpoint)",
|
|
||||||
default=0.0,
|
|
||||||
)
|
|
||||||
# Minimum similarity against the reference (reference or checkpoint if checkpoint is given)
|
|
||||||
min_ref_sim: float = Field(
|
|
||||||
description="Minimum similarity against the reference (reference or checkpoint if checkpoint is given)",
|
|
||||||
default=0.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
# The face index to use for swapping
|
|
||||||
faces_index: Tuple[int] = Field(
|
|
||||||
description="The face index to use for swapping, list of face numbers starting from 0",
|
|
||||||
default=(0,),
|
|
||||||
)
|
|
||||||
|
|
||||||
reference_face_index: int = Field(
|
|
||||||
description="The face index to use to extract face from reference",
|
|
||||||
default=0,
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_batch_images(self) -> List[Image.Image]:
|
|
||||||
images = []
|
|
||||||
if self.batch_images:
|
|
||||||
for img in self.batch_images:
|
|
||||||
images.append(base64_to_pil(img))
|
|
||||||
return images
|
|
||||||
|
|
||||||
|
|
||||||
class PostProcessingOptions(BaseModel):
|
|
||||||
face_restorer_name: str = Field(description="face restorer name", default=None)
|
|
||||||
restorer_visibility: float = Field(
|
|
||||||
description="face restorer visibility", default=1, le=1, ge=0
|
|
||||||
)
|
|
||||||
codeformer_weight: float = Field(
|
|
||||||
description="face restorer codeformer weight", default=1, le=1, ge=0
|
|
||||||
)
|
|
||||||
|
|
||||||
upscaler_name: str = Field(description="upscaler name", default=None)
|
|
||||||
scale: float = Field(description="upscaling scale", default=1, le=10, ge=0)
|
|
||||||
upscaler_visibility: float = Field(
|
|
||||||
description="upscaler visibility", default=1, le=1, ge=0
|
|
||||||
)
|
|
||||||
|
|
||||||
inpainting_denoising_strengh: float = Field(
|
|
||||||
description="Inpainting denoising strenght", default=0, lt=1, ge=0
|
|
||||||
)
|
|
||||||
inpainting_prompt: str = Field(
|
|
||||||
description="Inpainting denoising strenght",
|
|
||||||
examples=["Portrait of a [gender]"],
|
|
||||||
default="Portrait of a [gender]",
|
|
||||||
)
|
|
||||||
inpainting_negative_prompt: str = Field(
|
|
||||||
description="Inpainting denoising strenght",
|
|
||||||
examples=[
|
|
||||||
"Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation"
|
|
||||||
],
|
|
||||||
default="",
|
|
||||||
)
|
|
||||||
inpainting_steps: int = Field(
|
|
||||||
description="Inpainting steps",
|
|
||||||
examples=["Portrait of a [gender]"],
|
|
||||||
ge=1,
|
|
||||||
le=150,
|
|
||||||
default=20,
|
|
||||||
)
|
|
||||||
inpainting_sampler: str = Field(
|
|
||||||
description="Inpainting sampler", examples=["Euler"], default="Euler"
|
|
||||||
)
|
|
||||||
inpainting_when: InpaintingWhen = Field(
|
|
||||||
description="When inpainting happens",
|
|
||||||
examples=[e.value for e in InpaintingWhen.__members__.values()],
|
|
||||||
default=InpaintingWhen.NEVER,
|
|
||||||
)
|
|
||||||
inpainting_model: str = Field(
|
|
||||||
description="Inpainting model", examples=["Current"], default="Current"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class FaceSwapRequest(BaseModel):
|
|
||||||
image: str = Field(
|
|
||||||
description="base64 reference image",
|
|
||||||
examples=["...."],
|
|
||||||
default=None,
|
|
||||||
)
|
|
||||||
units: List[FaceSwapUnit]
|
|
||||||
postprocessing: Optional[PostProcessingOptions]
|
|
||||||
|
|
||||||
|
|
||||||
class FaceSwapResponse(BaseModel):
|
|
||||||
images: List[str] = Field(description="base64 swapped image", default=None)
|
|
||||||
infos: List[str]
|
|
Loading…
Reference in New Issue